
����������	
���������������
�����	��

�����������	�
	�
�

PDFlib GmbH München, Germany

www.pdflib.com

Version 4.0.3

http://www.pdflib.com

Copyright © 1997–2002 PDFlib GmbH and Thomas Merz. All rights reserved.

PDFlib GmbH
Tal 40, 80331 München, Germany
http://www.pdflib.com

phone +49 • 89 • 29 16 46 87
fax +49 • 89 • 29 16 46 86

If you have questions check the PDFlib mailing list and archive at http:/groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, and PostScript are trademarks of Adobe Systems Inc. AIX, IBM, OS/390, WebSphere, iSeries,
and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft, Windows,
and Windows NT are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are trademarks
of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is a trademark
of The Open Group. Java and Solaris are a trademark of Sun Microsystems, Inc. Other company product
and service names may be trademarks or service marks of others.

PDFlib contains modified parts of the following third-party software:
PNG image reference library (libpng), Copyright © 1998, 1999, 2000 Glenn Randers-Pehrson
Zlib compression library, Copyright © 1995-1998 Jean-loup Gailly and Mark Adler
TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.

PDFlib contains the RSA Security, Inc. MD5 message digest algorithm.
Viva Software GmbH (http://www.viva.de) contributed improvements to the Mac font handling code.

Author: Thomas Merz
Design and illustrations: Alessio Leonardi
Quality control (manual): Katja Karsunke, York Karsunke, Rainer Schaaf
Quality control (software): a cast of thousands

http://www.pdflib.com
http:/groups.yahoo.com/group/pdflib
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
0 Applying the PDFlib License Key 7

1 Introduction 9

1.1 PDFlib Programming 9

1.2 PDFlib Features 11

1.3 PDFlib Output and Compatibility 12

2 PDFlib Language Bindings 14

2.1 Overview of the PDFlib Language Bindings 14
2.1.1 What’s all the Fuss about Language Bindings? 14
2.1.2 Availability and Platforms 14
2.1.3 The »Hello world« Example 16
2.1.4 Error Handling 16
2.1.5 Version Control 16
2.1.6 Unicode Support 17
2.1.7 Summary of Language Bindings 17

2.2 ActiveX/COM Binding 17

2.3 C Binding 17
2.3.1 How does the C Binding work? 17
2.3.2 Availability and Special Considerations for C 18
2.3.3 The »Hello world« Example in C 18
2.3.4 Error Handling in C 20
2.3.5 Version Control in C 21
2.3.6 Unicode Support in C 21
2.3.7 Memory Management in C 22

2.4 C++ Binding 22
2.4.1 How does the C++ Binding work? 22
2.4.2 Availability and Special Considerations for C++ 22
2.4.3 The »Hello world« Example in C++ 23
2.4.4 Error Handling in C++ 23
2.4.5 Version Control in C++ 25
2.4.6 Unicode Support in C++ 25
2.4.7 Memory Management in C++ 25

2.5 Java Binding 26
2.5.1 How does the Java Binding work? 26
2.5.2 Installing the PDFlib Java Edition 26
2.5.3 The »Hello world« Example in Java 27
2.5.4 Error Handling in Java 28
2.5.5 Version Control in Java 29
2.5.6 Unicode Support in Java 29

2.6 .NET Binding 29

4 Contents

2.7 Perl Binding 29
2.7.1 How does the Perl Binding work? 29
2.7.2 Installing the PDFlib Perl Edition 29
2.7.3 The »Hello world« Example in Perl 30
2.7.4 Error Handling in Perl 31
2.7.5 Version Control in Perl 31
2.7.6 Unicode Support in Perl 31

2.8 PHP Binding 31
2.8.1 How does the PHP Binding work? 31
2.8.2 Installing the PDFlib PHP Edition 32
2.8.3 The »Hello world« Example in PHP 32
2.8.4 Error Handling in PHP 33
2.8.5 Version Control in PHP 33
2.8.6 Unicode Support in PHP 33

2.9 Python Binding 33
2.9.1 How does the Python Binding work? 33
2.9.2 Installing the PDFlib Python Edition 33
2.9.3 The »Hello world« Example in Python 34
2.9.4 Error Handling in Python 34
2.9.5 Version Control in Python 35
2.9.6 Unicode Support in Python 35

2.10 RPG Binding 35

2.11 Tcl Binding 35
2.11.1 How does the Tcl Binding work? 35
2.11.2 Installing the PDFlib Tcl Edition 35
2.11.3 The »Hello world« Example in Tcl 36
2.11.4 Error Handling in Tcl 36
2.11.5 Version Control in Tcl 37
2.11.6 Unicode Support in Tcl 37

3 PDFlib and PDI Programming 38

3.1 General Programming Issues 38
3.1.1 PDFlib Program Structure 38
3.1.2 Generating PDF Documents directly in Memory 38
3.1.3 Error Handling 39

3.2 Page Descriptions 40
3.2.1 Coordinate Systems 40
3.2.2 Page and Coordinate Limits 42
3.2.3 Paths and Color 44
3.2.4 Templates 45

3.3 Text Handling 46
3.3.1 The PDF Core Fonts 46
3.3.2 8-Bit Encodings built into PDFlib 46
3.3.3 Custom Encoding and Code Page Files for 8-Bit Encodings 48
3.3.4 The Euro Character 51

Contents 5

3.3.5 Hypertext Encoding 52
3.3.6 PostScript, TrueType, and OpenType Fonts 53
3.3.7 Resource Configuration and the UPR Resource File 56
3.3.8 Japanese, Chinese, and Korean Text 59
3.3.9 Unicode Support 64
3.3.10 Text Metrics, Text Variations, and Text Box Formatting 67

3.4 Image Handling 70
3.4.1 Supported Image File Formats 70
3.4.2 Code Fragments for Common Image Tasks 72
3.4.3 Re-using Image Data 74
3.4.4 Memory Images and External Image References 74
3.4.5 Image Masks and Transparency 75
3.4.6 Colorizing Images 77
3.4.7 Multi-Page Image Files 77

3.5 PDF Import with PDI 78
3.5.1 PDI Features and Applications 78
3.5.2 Using PDI Functions with PDFlib 79
3.5.3 Acceptable PDF Documents 80
3.5.4 PDF Import, Templates and graphics/text state inheritance 81

4 PDFlib and PDI API Reference 82

4.1 Data Types, Naming Conventions, and Scope 82

4.2 General Functions 84
4.2.1 Setup 84
4.2.2 Document and Page 87
4.2.3 Parameter Handling 90

4.3 Text Functions 91
4.3.1 Font Handling 91
4.3.2 Text Output 93

4.4 Graphics Functions 98
4.4.1 Graphics State Functions 98
4.4.2 Saving and Restoring Graphics States 100
4.4.3 Coordinate System Transformation Functions 101
4.4.4 Path Construction 103
4.4.5 Path Painting and Clipping 105

4.5 Color Functions 107

4.6 Image Functions 109

4.7 PDF Import (PDI) Functions 114
4.7.1 Document and Page 114
4.7.2 Parameter Handling 116

4.8 Hypertext Functions 118
4.8.1 Document Open Action and Open Mode 118
4.8.2 Bookmarks 119
4.8.3 Document Information Fields 119

6 Contents

4.8.4 Page Transitions 120
4.8.5 File Attachments 120
4.8.6 Note Annotations 121
4.8.7 Links 122
4.8.8 Thumbnails 125

4.9 Page Size Formats 125

5 The PDFlib License 127

5.1 The »Aladdin Free Public License« 127

5.2 The Commercial PDFlib License 127

6 References 128

A Shared Libraries and DLLs 129

B PDFlib Quick Reference 131

C Revision History 135

Index 137

7

0 Applying the PDFlib License Key
All binary PDFlib and PDI versions supplied by PDFlib GmbH can be used as fully func-
tional evaluation versions regardless of whether or not you obtained a commercial li-
cense. However, unlicensed versions will display a www.pdflib.com demo stamp (the
»nagger«) cross all generated pages. Companies which are seriously interested in PDFlib
licensing and wish to get rid of the nagger during the evaluation phase or for prototype
demos can submit their company and project details to sales@pdflib.com, and request a
temporary serial string.

Once you purchased a PDFlib or PDI serial number you must apply it in order to get
rid of the demo stamp. There are several methods for applying the serial number:
> Add a line to your script or program which sets the serial number at runtime:

PDF_set_parameter(p, "serial", "...your serial number...");

The serial number must be set only once, immediately after instantiating the PDFlib
object (i.e., after PDF_new() or equivalent call).

> Set an environment (shell) variable before PDFlib functions are called. The details of
setting environment variables vary across systems, but a typical statement for a
Unix shell looks as follows:

export PDFLIBSERIAL="...your serial number..."

Note that PDFlib and PDI are different products, and require different serial strings al-
though they are delivered in a single package. PDI serials will also be valid for PDFlib,
but not vice versa. Also, PDFlib and PDI serial numbers are platform-dependent, and can
only be used on the platform for which they have been purchased.

8 Chapter 0: Applying the PDFlib License Key

1.1 PDFlib Programming 9

1 Introduction

1.1 PDFlib Programming
What is PDFlib? PDFlib is a library which allows you to generate files in Adobe’s Porta-
ble Document Format (PDF). PDFlib acts as a backend to your own programs. While you
(the programmer) are responsible for retrieving or maintaining the data to be pro-
cessed, PDFlib takes over the task of generating the PDF code which graphically repre-
sents your data. While you must still format and arrange your text and graphical ob-
jects, PDFlib frees you from the internals and intricacies of PDF. PDFlib offers many
useful functions for creating text, graphics, images, and hypertext elements in PDF.

How can I use PDFlib? PDFlib is available on a variety of platforms, including Unix,
Windows, Mac OS, and EBCDIC-based systems such as IBM eServer iSeries 400 and
zSeries S/390. PDFlib itself is written in the C language, but it can be also accessed from
several other languages and programming environments which are called language
bindings. These language bindings cover all major Web application languages currently

PDF_circle()

PDF_setfont()
PDF_arc()

PDF_show()

PD
F_

lin
et

o(
)

ActiveX

C++
Java

CPython

Tcl

Perl

PHP

Fig. 1.1. The inner workings of PDFlib

10 Chapter 1: Introduction

in use. The Application Programming Interface (API) is easy to learn, and is identical for
all bindings. Currently the following bindings are supported:
> ActiveX/COM for use with Visual Basic, Active Server Pages with VBScript or JScript,

Allaire ColdFusion, Borland Delphi, Windows Script Host, and other environments
> ANSI C
> ANSI C++
> Java, including servlets
> .NET for use with C#, VB.NET, ASP.NET, and other environments
> PHP hypertext processor
> Perl
> Python
> RPG (IBM eServer iSeries 400)
> Tcl

What can I use PDFlib for? PDFlib’s primary target is creating dynamic PDF within
your own software, or on the World Wide Web. Similar to HTML pages dynamically gen-
erated on the Web server, you can use a PDFlib program for dynamically generating PDF
reflecting user input or some other dynamic data, e.g. data retrieved from the Web ser-
ver’s database. The PDFlib approach offers several advantages:
> PDFlib can be integrated directly in the application generating the data, eliminating

the convoluted creation path application–PostScript–Acrobat Distiller–PDF.
> As an implication of this straightforward process, PDFlib is the fastest PDF-generat-

ing method, making it perfectly suited for the Web.
> PDFlib’s thread-safety as well as its robust memory and error handling support the

implementation of high-performance server applications.
> PDFlib is available for a variety of operating systems and development environ-

ments.

However, PDFlib is not restricted to dynamic PDF on the Web. Equally important are all
kinds of converters from X to PDF, where X represents any text or graphics file format.
Again, this replaces the sequence X–PostScript–PDF with simply X–PDF, which offers
many advantages for some common graphics file formats like TIFF, GIF, PNG or JPEG.
Using such a PDF converter, batch converting lots of text or graphics files is much easier
than using the Adobe Acrobat suite of programs.

Requirements for using PDFlib. PDFlib makes PDF generation possible without wading
through the 900+ page PDF specification. While PDFlib tries to hide technical PDF de-
tails from the user, a general understanding of PDF is useful. In order to make the best
use of PDFlib, application programmers should ideally be familiar with the basic graph-
ics model of PostScript (and therefore PDF). However, a reasonably experienced applica-
tion programmer who has dealt with any graphics API for screen display or printing
shouldn’t have much trouble adapting to the PDFlib API as described in this manual.

About this manual. This manual describes the API implemented in PDFlib. It does not
describe the process of building the library binaries. Functions not described in this
manual are unsupported, and should not be used. This manual does not attempt to ex-
plain Acrobat features. Please refer to the Acrobat product literature, and the material
cited at the end of this manual for further reference.

1.2 PDFlib Features 11

1.2 PDFlib Features
Table 1.1 lists the major PDFlib API features for generating PDF documents.

Table 1.1. PDFlib features for generating PDF

topic features
PDF input > existing PDF documents can be imported with the optional PDF import library (PDI)
PDF output > PDF documents of arbitrary length, directly in memory (for Web servers) or on disk file

> arbitrary page size–each page may have a different size
> compression for text, vector graphics, image data, and file attachments
> compatibility modes for PDF 1.2, 1.3, and 1.4 (Acrobat 3, 4, and 5)

Vector
graphics

> common vector graphics primitives: lines, curves, arcs, rectangles, etc.
> vector paths for stroking, filling, and clipping
> grayscale, RGB, CMYK, and spot color for stroking and filling objects
> pattern fills and strokes
> efficiently re-use text or vector graphics with templates

Fonts > text output in different fonts; underlined, overlined, and strikeout text
> text column formatting
> TrueType, PostScript Type 1 (PFB and PFA, plus LWFN on the Mac), and OpenType font support

with or without font embedding; fonts can be pulled from the Windows or Mac host system
> support for AFM and PFM PostScript font metrics files
> library clients can retrieve character metrics for exact formatting
> on IBM eServer iSeries 400 and zSeries S/390: fetch encodings from the system

Hypertext > page transition effects such as shades and mosaic
> nested bookmarks
> PDF links, launch links (other document types), and Web links
> document information: four standard fields (Title, Subject, Author, Keywords) plus unlimited

number of user-defined info fields (e.g., part number)
> file attachments and note annotations

Internatio-
nalization

> Unicode support (see below)
> support for a variety of encodings (both built-in and user-defined)
> CID font and CMap support for Chinese, Japanese, and Korean text
> support for the Euro character
> support for international standards and vendor-specific code pages

Unicode > Unicode support for hypertext features: bookmarks, contents and title of text annotations, doc-
ument information fields, file attachment description, and author name

> Unicode code pages for TrueType and PostScript fonts
> Unicode encoding for Japanese, Chinese, and Korean text

Images > embed GIF (non-interlaced), PNG, TIFF, JPEG, or CCITT raster images
> images constructed by the client directly in memory
> efficiently re-use image data, e.g., for repeated logos on each page
> transparent (masked) images and image masks (transparent images with a color applied)
> colorize images with a spot color

Pro-
gramming

> language bindings for ActiveX/COM, C, C++, Java (including servlets), Perl, PHP, Python, RPG, Tcl
> transparent Unicode handling for ActiveX, Java, and Tcl
> thread-safe for deployment in multi-threaded server applications
> configurable error handler and memory management for C and C++
> exception handling integrated with the host language’s native exception handling
> available for a wide variety of systems, including ASCII- and EBCDIC-based platforms

12 Chapter 1: Introduction

1.3 PDFlib Output and Compatibility
PDFlib output. PDFlib generates binary PDF output. The PDF output will be com-
pressed with the Flate (also known as ZIP) compression algorithm. Compression can
also be deactivated. Compression applies to potentially large items, such as raster image
data (unless these are already precompressed, such as JPEG), and file attachments, as
well as text and vector operators on page descriptions. The compression speed/output
size trade-off can be controlled with a PDFlib parameter.

Acrobat 4 features. Generally, we strive to produce PDF documents which may be
used with a wide variety of PDF consumers. PDFlib generates output compatible with
Acrobat 3 and higher.

However, certain features either require Acrobat 4, or don’t work in Acrobat Reader
but only the full Acrobat product. Table 1.2 lists those features. More details can be
found at the respective function descriptions.

Acrobat 3 compatibility mode. Basically, if you don’t use any Acrobat 4 features, the
generated PDF files will be compatible to Acrobat 3 and 4. However, due to a very rare
compatibility issue with certain output devices, PDFlib also offers a strict Acrobat 3
compatibility mode. In order to understand the problem, we must distinguish between
the actual Acrobat viewer version required by a certain PDF file, and the very first line in
the file which may read %PDF-1.2 or %PDF-1.3 for Acrobat 3 and Acrobat 4-generated files,
respectively. It’s important to know that Acrobat 3 viewers open files starting with the
%PDF-1.3 line without any problem, provided the file doesn’t use any Acrobat 4 feature.
This is the basis of PDFlib’s multi-version compatibility approach.

However, some PDF consumers other than Acrobat implement a much stricter way
of version control: they simply reject all files starting with the %PDF-1.3 line, regardless
of whether the actual content requires a PDF 1.2 or PDF 1.3 interpreter. For example,
some EfI RIPs for high-speed digital printing machines are known to (mis-)behave in
this manner. In order to work around this problem, PDFlib offers a strict Acrobat 3 com-
patibility mode in which a %PDF-1.2 header is emitted, and Acrobat 4 features are dis-
abled.

Table 1.2. PDFlib features which require Acrobat 4 or above

topic remarks
hypertext > file attachments are not recognized in Acrobat 3 (require full Acrobat 4)

> different icons for notes are not recognized in Acrobat 3
page size > Acrobat 4 extends the limits for acceptable PDF page sizes
Unicode > Unicode hypertext doesn’t work in Acrobat 3
font > the Euro symbol is not supported in Acrobat 3

> Unicode support for TrueType fonts doesn’t work in Acrobat 3
> CID fonts for Chinese, Japanese, and Korean require Acrobat 3J or Acrobat 4

color > the pattern color space is not supported in Acrobat 3 compatibility mode (although pat-
terns can be printed with Acrobat 3, they do not display on screen).

transparency > transparency information is ignored in Acrobat 3
JPEG images > Acrobat 3 supports only baseline JPEG images, but not the progressive flavor
external
images

> Acrobat 4 (but not the free Acrobat Reader) supports external image references via URL.
Acrobat 3 is unable to display such referenced images.

1.3 PDFlib Output and Compatibility 13

Note again that it is not necessary to use PDFlib’s strict Acrobat 3 compatibility mode
only to make sure the PDF files can be read with Acrobat 3 – this will automatically be
the case if you refrain from using the above-mentioned Acrobat 4 features. The strict
mode is only required for those rare situations where you have to deal with one of those
broken PDF-enabled RIPs.

Acrobat 5 compatibility. PDFlib accepts Acrobat 5 PDF files for import, and will gener-
ate Acrobat 5 features in the future. Output compatibility may be set to PDF 1.4 (=Acro-
bat 5) if Acrobat 5 PDF files are to be imported into the generated document. The PDF
import library PDI fully supports PDF 1.4 (see Section 3.5.2, »Using PDI Functions with
PDFlib«).

14 Chapter 2: PDFlib Language Bindings

2 PDFlib Language Bindings

2.1 Overview of the PDFlib Language Bindings
2.1.1 What’s all the Fuss about Language Bindings?

While the C programming language has been one of the cornerstones of systems and
applications software development for decades, a whole slew of other languages have
been around for quite some time which are either related to new programming para-
digms (such as C++), open the door to powerful platform-independent scripting capabil-
ities (such as Perl, Tcl, and Python), promise a new quality in software portability (such
as Java), or provide the glue among many different technologies while being platform-
specific (such as ActiveX/COM).

Naturally, the question arises how to support so many languages with a single li-
brary. Fortunately, all modern language environments are extensible in some way or
another. This includes support for extensions written in the C language in all cases.
Looking closer, each environment has its own restrictions and requirements regarding
the implementation of extensions.

Fortunately enough, the task of writing language wrappers has been facilitated by a
cute program called SWIG1 (Simplified Wrapper and Interface Generator), written by
Dave Beazley. SWIG is brilliant in design and implementation. With the help of SWIG,
early PDFlib versions could easily be integrated into the Perl, Tcl, and Python scripting
languages. However, over time the requirements for the PDFlib language wrappers
grew, until finally it was necessary to manually fine-tune or partially rewrite the SWIG-
generated wrapper code. For this reason the language wrappers are no longer generated
automatically using SWIG. SWIG support for PDFlib was suggested and in its first incar-
nation implemented by Rainer Schaaf <rjs@pdflib.com>2.

PDFlib scripting API. In order to avoid duplicating the PDFlib API reference manual for
all supported languages, this manual is considered authoritative not only for the C
binding but also for all other languages (except ActiveX, for which a separate edition of
the manual is available). Of course, the script programmer has to mentally adapt certain
conventions and syntactical issues from C to the relevant language. However, translat-
ing C API calls to, say, Perl calls is a straightforward process.

2.1.2 Availability and Platforms
All PDFlib features are available on all platforms and in all language bindings (with a
few minor exceptions which are noted in the manual). Given the broad range of plat-
forms and languages (let alone different versions of both) supported by PDFlib, it
shouldn’t be much of a surprise that not all combinations of platforms, languages, and
versions thereof can be tested. However, we strive to make PDFlib work with the latest
available versions of the respective environments. Table 2.1 lists the language/platform
combinations we used for testing.

1. More information on SWIG can be found at http://www.swig.org
2. On a totally unrelated note, Rainer and his wonderful family live in a nice house close to the Alps – definitely a great place
for biking!

http://www.swig.org
mailto:rjs@pdflib.com

2.1 Overview of the PDFlib Language Bindings 15

Using PDFlib on Mac OS. As shown in Table 2.1, all relevant language bindings are sup-
ported on Mac OS (Classic). The following Mac-specific differences should be noted:
> The directory separator (e.g., in pdflib.upr configuration files) is the colon ’:’ character;
> PDFlib correctly sets the file type and creator for generated PDF files;
> The built-in font metrics for the core fonts are arranged according to macroman en-

coding, allowing for easy output of Mac-encoded text.
> The Unix-based concepts of a standard output channel and environment variables

don’t exist, and are therefore not available in PDFlib;
> The files in the PDFlib source code distribution (source files, sample scripts, PDF doc-

uments, etc.) have file type and creator correctly set.

Note The Darwin edition of PDFlib runs natively on Mac OS X.

Using PDFlib on EBCDIC-based platforms. The operators and structure elements in the
PDF file format are completely based on ASCII, making it difficult to mix text output
and PDF operators on EBCDIC-based platforms such as IBM eServer iSeries 400 and
zSeries S/390. However, a special mainframe version of PDFlib has been carefully craft-
ed in order to allow mixing of ASCII-based PDF operators and EBCDIC (or other) text out-
put. The EBCDIC-safe version of PDFlib is available as a separate package.

In order to leverage PDFlib’s features on EBCDIC-based platforms the following items
are expected to be supplied in EBCDIC text format:
> PFA font files, UPR configuration files, AFM font metrics files
> encoding and code page files
> document information (if not Unicode, see function descriptions)
> string parameters to PDFlib functions

Table 2.1. Tested language and platform combinations

language
Unix (Linux, Solaris,
HP-UX, AIX a.o.) Windows Mac OS (Classic)

IBM eServer iSeries
400, zSeries S/390

ActiveX/
COM

– ASP (PWS, IIS 4 and 5)
WSH (VBScript 5, JScript 5)
Visual Basic 6.0
Borland Delphi 5 and 6
Allaire ColdFusion 4.5

– –

ANSI C gcc
and other ANSI C
compilers

Microsoft Visual C++ 6.0
Metrowerks CodeWarrior 6,7
Borland C++ Builder 5

Metrowerks
CodeWarrior 6,7

IBM c89
SAS C for MVS

ANSI C++ gcc and other ANSI
C++ compilers

Microsoft Visual C++ 6.0
Metrowerks CodeWarrior 6,7

Metrowerks
CodeWarrior 6,7

IBM c89

Java Sun JDK 1.2.2, 1.3, 1.4
IBM JDK 1.1.8
Inprise JBuilder 3.5
Kaffe OpenVM 1.0.5

Sun JDK 1.1.8, 1.2.2, 1.3, 1.4
Inprise JBuilder 3.5 and 4
Allaire JRun 3.0
Allaire ColdFusion 4.5

MRJ 2.2,
based on JDK 1.1.8

JDK 1.2, 1.3

.NET – .NET Framework 1.0 – –
Perl Perl 5.005, 5.6 ActivePerl 5.005 and 5.6 MacPerl 5.2.0r4,

and 5.6.1a5
–

PHP PHP 4.04 – 4.2.1 PHP 4.04 – 4.2.1 – –
Python Python 1.6, 2.0 – 2.2 Python 1.6, 2.0 –2.2 Python 2.0 and 2.1.1 –
RPG – – – V3R7M0 and above
Tcl Tcl 8.3.2 and 8.4a2 Tcl 8.3.2 and 8.4a2 Tcl 8.3.2 –

16 Chapter 2: PDFlib Language Bindings

> input and output file names
> environment variables (if supported by the runtime environment)
> PDFlib error messages will also be generated in EBCDIC format (except in Java).

In contrast, the following items must be treated in binary mode (i.e., any conversion
must be avoided):
> PDF input and output files
> PFB font outline and PFM font metrics files
> TrueType and OpenType font files
> JPEG, GIF, TIFF, PNG, and CCITT image files

Note Due to restrictions in PDF, text box formatting (PDF_show_boxed()) is not supported for
EBCDIC encoding.

PDFlib on embedded systems. It shall be noted that PDFlib can also be used on embed-
ded systems, and has been ported to the Windows CE and EPOC environments as well as
custom embedded systems. For use with restricted environments certain features are
configurable in order to reduce PDFlib’s overall memory footprint. If you are interested
in details please contact us via sales@pdflib.com.

2.1.3 The »Hello world« Example
Being a well-known programming classic, the »Hello, world!« example will be used for
our examples. It uses PDFlib to generate a one-page PDF file with some text on the page.
In the following sections, the »Hello, world!« sample will be shown for all supported lan-
guage bindings. The code for all language samples is contained in the PDFlib distri-
bution. The distribution contains simple examples for text, vector, and image handling
as well as PDF import for all supported language bindings.

2.1.4 Error Handling
PDFlib provides a sophisticated means for dealing with different kinds of programming
and runtime errors. In order to allow for smooth integration to the respective language
environment, PDFlib’s error handling is integrated into the language’s native way of
dealing with exceptions. Basically, C and C++ clients can install custom code which is
called when an error occurs. Other language bindings use the existing exception ma-
chinery provided by all modern languages. More details on PDFlib’s exception handling
can be found in Section 3.1.3, »Error Handling«. The sections on error handling in this
chapter cover the language-specific details for the supported environments.

2.1.5 Version Control
Taking into account the rapid development cycles of software in general, and Internet-
related software in particular, it is important to allow for future improvements without
breaking existing clients. In order to achieve compatibility across multiple versions of
the library, PDFlib supports several version control schemes depending on the respec-
tive language. If the language supports a native versioning mechanism, PDFlib seam-
lessly integrates it so the client doesn’t have to worry about versioning issues except
making use of the language-supplied facilities. In other cases, when the language
doesn’t support a suitable versioning scheme, PDFlib supplies its own major, minor,
and revision version number at the interface level. These may be used by the client in

2.2 ActiveX/COM Binding 17

order to decide whether the given PDFlib implementation is acceptable, or should be re-
jected because a newer version is required.

2.1.6 Unicode Support
PDFlib supports Unicode for a variety of features (see Section 3.3.9, »Unicode Support«
for details). The language bindings, however, differ in their native support for Unicode.
If a given language binding supports Unicode strings, the respective PDFlib language
wrapper is aware of the fact, and automatically deals with Unicode strings in the correct
way.

2.1.7 Summary of Language Bindings
For easy reference, Table 2.2 summarizes important features of the PDFlib language
bindings. More details can be found in the respective sections of this manual.

2.2 ActiveX/COM Binding
(This section is not included in this edition of the PDFlib manual.)

2.3 C Binding
2.3.1 How does the C Binding work?

In order to use the PDFlib C binding, you can use a static or shared library (DLL on Win-
dows and MVS), and you need the central PDFlib include file pdflib.h for inclusion in
your PDFlib client source modules. Alternatively, pdflibdl.h can be used for dynamically
loading the PDFlib DLL at runtime (see below). The PDFlib distribution is prepared for
building both static or dynamic versions of the library.

Table 2.2. Summary of the language bindings

language
custom
error handling

Unicode
conversion

version
control thread-safe EBCDIC-safe

COM/ActiveX COM exceptions yes Class ID and ProgID yes (both-
threading)

–

C client-supplied
error handler

– manually yes yes

C++ C++ exceptions – manually yes yes
Java Java exceptions yes automatically yes yes
.NET .NET exceptions yes major/minor/

revision
yes –

Perl Perl exceptions – via package
mechanism

– –

PHP PHP warnings – manually yes –
Python Python exceptions – manually – –
RPG RPG exceptions – manually – yes
Tcl Tcl exceptions yes (Tcl 8.2

and above)
via package
mechanism

yes –

18 Chapter 2: PDFlib Language Bindings

2.3.2 Availability and Special Considerations for C
PDFlib itself is written in the ANSI C language, and assumes ANSI C clients as well as 32-
bit platforms (at least). No provisions have been made to make PDFlib compatible with
older C compilers, or 16-bit platforms.

Using PDFlib as a DLL loaded at runtime. While most clients will use PDFlib as a stati-
cally bound library or a dynamic library which is bound at link time, you can also load
the PDFlib DLL at runtime and dynamically fetch pointers to all API functions. This is es-
pecially useful on MVS where the library is customarily loaded as a DLL at runtime,
without linking to PDFlib at all. PDFlib supports a special mechanism to facilitate this
use. It works as follows:
> Include pdflibdl.h instead of pdflib.h.
> Compile the auxiliary module pdflibdl.c and link your application against it.
> Use PDF_boot_dll(), and prefix all PDFlib function calls so that function pointers are

accessed.

An example for this technique is demonstrated below.

Note Loading the PDFlib DLL at runtime is supported on selected platforms only.

2.3.3 The »Hello world« Example in C
The following example shows a simple C program which links against a static or shared/
dynamic PDFlib library:

#include <stdio.h>
#include <stdlib.h>

#include "pdflib.h"

int
main(void)
{
 PDF *p;
 int font;

p = PDF_new();

/* open new PDF file */
if (PDF_open_file(p, "hello_c.pdf") == -1) {

fprintf(stderr, "Error: couldn’t open PDF file.\n");
exit(2);

}

 PDF_set_info(p, "Creator", "hello.c");
 PDF_set_info(p, "Author", "Thomas Merz");
 PDF_set_info(p, "Title", "Hello, world (C)!");

 PDF_begin_page(p, a4_width, a4_height); /* start a new page */

 font = PDF_findfont(p, "Helvetica-Bold", "host", 0);
 PDF_setfont(p, font, 24);
 PDF_set_text_pos(p, 50, 700);
 PDF_show(p, "Hello, world!");
 PDF_continue_text(p, "(says C)");

2.3 C Binding 19

 PDF_end_page(p); /* close page */

 PDF_close(p); /* close PDF document */
PDF_delete(p); /* delete the PDF "object" */

 return 0;
}

The following example loads the PDFlib DLL at runtime using the PDF_boot_dll() helper
function:

#include <stdio.h>
#include <stdlib.h>

#include "pdflibdl.h"

int
main(void)
{
 PDF *p;
 int font;
 PDFlib_api *PDFlib = PDF_boot_dll();

 if (PDFlib == NULL) {

fprintf(stderr, "Error: couldn't load PDFlib DLL.\n");
return 0;

 }

 p = PDFlib->PDF_new();

 /* open new PDF file */
 if (PDFlib->PDF_open_file(p, "hellodl.pdf") == -1) {

fprintf(stderr, "Error: cannot open PDF file hellodl.pdf.\n");
exit(2);

 }

 PDFlib->PDF_set_info(p, "Creator", "hello.c");
 PDFlib->PDF_set_info(p, "Author", "Thomas Merz");
 PDFlib->PDF_set_info(p, "Title", "Hello, world (C DLL)!");

 PDFlib->PDF_begin_page(p, a4_width, a4_height); /* start a new page */

 font = PDFlib->PDF_findfont(p, "Helvetica-Bold", "host", 0);
 PDFlib->PDF_setfont(p, font, 24);
 PDFlib->PDF_set_text_pos(p, 50, 700);
 PDFlib->PDF_show(p, "Hello, world!");
 PDFlib->PDF_continue_text(p, "(says C DLL)");
 PDFlib->PDF_end_page(p); /* close page */

 PDFlib->PDF_close(p); /* close PDF document */
 PDFlib->PDF_delete(p); /* delete the PDF object */
 PDF_shutdown_dll(PDFlib); /* unload the library */

 return 0;
}

20 Chapter 2: PDFlib Language Bindings

2.3.4 Error Handling in C
C or C++ clients can install a custom error handler routine with PDF_new2(). In case of an
exception this routine will be called with a pointer to the PDF structure, the error type,
and a descriptive string as arguments. A list of PDFlib error types can be found in Sec-
tion 3.1.3, »Error Handling«. The opaque data pointer argument to PDF_new2() is useful
for multi-threaded applications which want to supply a handle to thread- or class-spe-
cific data in the PDF_new2() call. PDFlib supplies the opaque pointer to the user-sup-
plied error and memory handlers via a call to PDF_get_opaque(), but doesn’t otherwise
use it.

For C and C++ clients which do not install their own error handler, the default action
upon exceptions is to issue an appropriate message on the standard error channel, and
exit on fatal errors. The PDF output file will be left in an inconsistent state! Since this
may not be adequate for a library routine, for serious PDFlib projects it is strongly ad-
vised to leverage PDFlib’s error handling facilities. A user-defined error handler may, for
example, present the error message in a GUI dialog box, and take other measures in-
stead of aborting.

An important task of the error handler is to clean up PDFlib internals using PDF_
delete() and the supplied pointer to the PDF object. PDF_delete() will also close the out-
put file if necessary. PDFlib functions other than PDF_delete() and PDF_get_opaque()
must not be called from within a client-supplied error handler. After fatal exceptions
the PDF document cannot be used, and will be left in an incomplete and inconsistent
state.

Except for non-fatal errors (type NonfatalError), client-supplied error handlers must
not return to the library function which raised the exception. This can be achieved by
using C’s setjmp()/longjmp() facility. It is an error to call other PDFlib functions for the
same PDF document after a fatal exception.

The following code may be used as a starting point for developing a custom error
handler for your application and installing it in PDFlib (for general information about
PDFlib’s exception handling see Section 3.1.3, »Error Handling«):

#include <stdio.h>
#include <stdlib.h>
#include <setjmp.h>

#include "pdflib.h"

typedef struct { /* there is no portable way to cast a void pointer to a */
 jmp_buf jbuf; /* jmp_buf pointer. Therefore we pack it into a structure. */
 /* ... */ /* You can add your thread-specific data here. */
} err_info;

void custom_errorhandler(PDF *p, int type, const char *msg) {
 err_info *ep;

 fprintf(stderr, "Application error: %s\n", msg); /* Issue a warning message */

 switch (type) {
case PDF_NonfatalError: /* The error handler may return after */
 return; /* a non-fatal exception. */

case PDF_MemoryError: /* You can act on specific errors here */
case PDF_IOError:

2.3 C Binding 21

case PDF_RuntimeError:
case PDF_IndexError:
case PDF_TypeError:
case PDF_DivisionByZero:
case PDF_OverflowError:
case PDF_SyntaxError:
case PDF_ValueError:
case PDF_SystemError:
case PDF_UnknownError:
default: /* do NOT return to PDFlib! */
 ep = (err_info *) PDF_get_opaque(p); /* fetch our jmp_buf */
 PDF_delete(p); /* important: clean up PDFlib */
 longjmp(ep->jbuf, 1); /* now return to the application */

 }
}

int main(void) {
 err_info ei;

 if (setjmp(ei.jbuf) == 0) {
PDF *p = PDF_new2(custom_errorhandler, 0, 0, 0, &ei);
/* ... more PDFlib function calls ... */
PDF_delete(p);
return(0);

 } else {
printf("exiting after PDFlib exception!\n");
return(99);

 }
}

Obviously, the appropriate action when an exception occurs is completely application
specific. The above sample doesn’t even attempt to handle the error, but simply exits.

2.3.5 Version Control in C
In the C language binding there are two basic versioning issues:
> Does the PDFlib header file in use for a particular compilation correspond to the

PDFlib binary?
> Is the PDFlib library in use suited for a particular application, or is it too old?

The first issue can be dealt with by comparing the macros PDFLIB_MAJORVERSION and
PDFLIB_MINORVERSION supplied in pdflib.h with the return values of the API functions
PDF_get_majorversion() and PDF_get_minorversion() which return PDFlib major and mi-
nor version numbers.

The second issue can be dealt with by comparing the return values of the above-
mentioned functions with fixed values corresponding to the needs of the application.

On Unix platforms the PDFlib library file name may contain version information if
the platform supports it (see Appendix A, »Shared Libraries and DLLs«). In this case
PDFlib makes use of operating system support for library versioning.

2.3.6 Unicode Support in C
C developers must manually construct their Unicode strings according to Section 3.3.9,
»Unicode Support«. For CJK text which may contain null characters, the PDF_show2()

22 Chapter 2: PDFlib Language Bindings

functions etc. must be used, since their counterparts PDF_show() etc. expect regular
null-terminated C-style strings which don’t support embedded null characters.

2.3.7 Memory Management in C
In order to allow for maximum flexibility, PDFlib’s internal memory management rou-
tines (which are based on standard C malloc/free) can be replaced by external procedures
provided by the client. These procedures will be called for all PDFlib-internal memory
allocation or deallocation. Memory management routines can be installed with a call to
PDF_new2(), and will be used in lieu of PDFlib’s internal routines. Either all or none of
the following routines must be supplied:
> an allocation routine
> a deallocation (free) routine
> a reallocation routine for enlarging memory blocks previously allocated with the al-

location routine.
The signatures of the memory routines can be found in Section 4.2, »General Func-
tions«. These routines must adhere to the standard C malloc/free/realloc semantics, but
may choose an arbitrary implementation. All routines will be supplied with a pointer to
the calling PDF object. The only exception to this rule is that the very first call to the al-
location routine will supply a PDF pointer of NULL. Client-provided memory allocation
routines must therefore be prepared to deal with a NULL PDF pointer.

Using the PDF_get_opaque() function, an opaque application specific pointer can be
retrieved from the PDF object. The opaque pointer itself is supplied by the client in the
PDF_new2() call. The opaque pointer is useful for multi-threaded applications which
may want to keep a pointer to thread- or class specific data inside the PDF object, for use
in memory management or error handling routines.

2.4 C++ Binding
2.4.1 How does the C++ Binding work?

In addition to the pdflib.h C header file, an object wrapper for C++ is supplied for PDFlib
clients. It requires the pdflib.hpp header file, which in turn includes pdflib.h which must
also be available. The corresponding pdflib.cpp module should be linked against the ap-
plication which in turn should be linked against the generic PDFlib C library.

Using the C++ object wrapper effectively replaces the PDF_ prefix in all PDFlib func-
tion names with a more object-oriented approach. Keep this in mind when reading the
PDFlib API descriptions in this manual which are documented in C style.

2.4.2 Availability and Special Considerations for C++
The PDFlib C++ binding assumes an ANSI C++ environment. As of PDFlib 4.0.2, the name
of the PDFlib C++ class has been changed to PDFlib (previously PDF). However, older cli-
ents which still use the PDF class name will still work since the names will be mapped
transparently in pdflib.hpp (see also the compatibility description in Section 2.4.4, »Error
Handling in C++« below).

2.4 C++ Binding 23

2.4.3 The »Hello world« Example in C++
#include <iostream>
#include "pdflib.hpp"

int
main(void)
{

 int font;
 PDFlib *p = new PDFlib(); // pointer to the PDFlib object

 // Open new PDF file
 if (p->open("hello.pdf") == -1) {
 cerr << "Error: cannot open PDF file hello.pdf" << endl;
 return 99;
 }

 p->set_info("Creator", "hello.cpp");
 p->set_info("Author", "Thomas Merz");
 p->set_info("Title", "Hello, world (C++)!");

 // start a new page
 p->begin_page((float) a4_width, (float) a4_height);

 font = p->findfont("Helvetica-Bold", "host", 0);

 p->setfont(font, 24);
 p->set_text_pos(50, 700);
 p->show("Hello, world!");
 p->continue_text("(says C++)");
 p->end_page(); // finish page
 p->close(); // close PDF document

 delete p;

 return 0;
}

2.4.4 Error Handling in C++
PDFlib’s C++ binding supports two kinds of exception handling. The first one integrates
PDFlib’s exception handling with native C++ exceptions. It has been introduced in
PDFlib 4.0.2 and is the recommended way of dealing with runtime errors.

The »old-style« scheme works with a callback error handler which must be written in
C, and supplied by the client. This method is somewhat clumsy from the C++ point of
view, and no longer recommended. However, for compatibility reasons PDFlib’s C++
wrapper activates the old-style scheme by default.

Note We expect future versions of PDFlib to switch to native C++ exceptions as the default scheme.

Native C++ exception handling. In order to activate native C++ exceptions for PDFlib
you must compile the PDFlib C++ wrapper with the PDF_THROWS_CPP_EXCEPTIONS pre-
processer symbol defined. Activating C++ exceptions will also result in the PDFlib C++
class being renamed from PDF to PDFlib. In order to provide extended error information

24 Chapter 2: PDFlib Language Bindings

the PDFlib class provides a public PDFlib::Exception class which exposes the following
methods:

string get_message(); /* retrieve error information string */
const void *get_opaque(); /* retrieve opaque pointer passed to PDFlib */

The PDFlib exception class is subclassed into separate exception classes for all PDFlib
exception types as follows:

MemoryException
IOException
RuntimeException
IndexException
TypeException
DivisionByZeroException
OverflowException
SyntaxException
ValueException
SystemException
NonfatalException
UnknownException

Native C++ exceptions thrown by PDFlib routines will behave as expected. The following
code fragment will catch exceptions thrown by PDFlib:

try {
...some PDFlib instructions...

} catch (PDFlib::Exception &ex) {
 cerr << "PDFlib exception: " << ex.get_message() << endl;
}

Old-style error handler. Old-style error handling for PDFlib clients written in C++
works the same as error handling in C, so everything in Section 2.3.4, »Error Handling in
C« applies to C++, too. In addition, a number of C++ peculiarities must be observed:

A C++ error handler can be supplied in the PDF constructor, which has the same sig-
nature as the PDF_new2() function. The C++ error handler must be a »C« function, but it
may call C++ methods in turn.

In the old-style C++ binding, the PDF data type refers to a C++ class, not to the struc-
ture used in the C binding (this change is automatically accomplished via macro substi-
tution in the header files). However, the C++ error handler lives on the client side, but
has to deal with the PDFlib-internal C data structure. For this reason, C++ error handlers
must use the (semi-private) data type name PDF_c although the PDFlib API reference
calls for the PDF data type. A C++ error handler for PDFlib therefore is only slightly dif-
ferent from the C error handler above:

void custom_errorhandler(PDF_c *p, int type, const char *msg) {
/* ... same as C error handler ... */

}

Since the error handler must be a »C« function, it should be defined in a separate mod-
ule errorhandler.h which is referenced from the C++ code as follows:

extern "C" {
#include "errorhandler.h"
}

2.4 C++ Binding 25

int main(void) {
 err_info ei;

 if (setjmp(ei.jbuf) == 0) {
PDF *p;
p = new PDF(custom_errorhandler, 0, 0, 0, &ei);
/* ... more PDFlib method calls ... */
delete p;
return(0);

 } else {
printf("exiting after PDFlib exception!\n");
return(99);

 }
}

Finally, a note for those brave folks who want to throw C++ exceptions in their client-
supplied PDFlib error handler: don’t do it! Since PDFlib is a C implementation, the error
handler will be called from a C-style stack without any exception and stack unwinding
information, so throwing a C++ exception in the error handler is likely to result in a
crash. The correct way to do it is to install a »C« style error handler, do a longjmp() to a
C++ method, and throw the C++ exception from there (since we’re now back on the C++
stack).

2.4.5 Version Control in C++
Version control for the C++ binding is identical to version control in the C binding (see
Section 2.3.5, »Version Control in C«)

2.4.6 Unicode Support in C++
Unicode support for the C++ binding is identical to Unicode support in the C binding
(see Section 2.3.6, »Unicode Support in C«).

2.4.7 Memory Management in C++
Client-supplied memory management for the C++ binding works the same as with the C
language binding. As with the error handler, the signatures of the memory manage-
ment routines must be slightly changed to use PDF_c instead of PDF as their first argu-
ment.

The PDF constructor accepts an optional error handler, optional memory manage-
ment procedures, and an optional opaque pointer argument. Default NULL arguments
are supplied in pdflib.hpp which will result in PDFlib’s internal error and memory man-
agement routines becoming active. All memory management functions must be »C«
functions, not C++ methods.

26 Chapter 2: PDFlib Language Bindings

2.5 Java Binding
2.5.1 How does the Java Binding work?

Starting with the Java1 Development Kit (JDK) 1.1, Java supports a portable mechanism
for attaching native language code to Java programs, the Java Native Interface (JNI). The
JNI provides programming conventions for calling native C or C++ routines from within
Java code, and vice versa. Each C routine has to be wrapped with the appropriate code in
order to be available to the Java VM, and the resulting library has to be generated as a
shared or dynamic object in order to be loaded into the Java VM.

PDFlib supplies JNI wrapper code for using the library from Java. This technique al-
lows us to attach PDFlib to Java by loading the shared library from the Java VM. The ac-
tual loading of the library is accomplished via a static member function in the pdflib
Java class. Therefore, the Java client doesn’t have to bother with the specifics of shared
library handling.

Taking into account PDFlib’s stability and maturity (and the availability of source
code), attaching the native PDFlib library to the Java VM doesn’t impose any stability or
security restrictions on your Java application, while at the same time offering the per-
formance benefits of a native implementation. Regarding portability remember that
PDFlib runs on more platforms than the Java VM!

2.5.2 Installing the PDFlib Java Edition
Obviously, for developing Java applications you will need the JDK which includes sup-
port for the JNI. For compiling the PDFlib-supplied JNI wrapper file (C code), you will
need the JNI header files for C, which are part of the JDK.

The JDK has been ported to many Unix and other platforms. Apple’s Java implemen-
tation, the Mac OS Runtime for Java (MRJ), version 2.0 and above, also supports the JNI.
For the PDFlib binding to work, the Java VM must have access to the PDFlib Java wrapper
and the PDFlib Java package.

The PDFlib Java package. In order to maintain a consistent look-and-feel for the Java
developer, PDFlib is organized as a Java package with the following package name:

com.pdflib.pdflib

This package is available in the pdflib.jar file and contains a single class called pdflib. You
can generate an abbreviated HTML-based version of the PDFlib API reference (this man-
ual) using the javadoc utility since the PDFlib class contains the necessary javadoc com-
ments. javadoc-generated documentation is contained in the PDFlib binary distribution.
Comments on using PDFlib with specific Java IDEs may be found in text files in the dis-
tribution set.

In order to supply this package to your application, you must add pdflib.jar to your
CLASSPATH environment variable, add the option -classpath pdflib.jar in your calls to the
Java compiler and runtime, or perform equivalent steps in your Java IDE. In JDK 1.2 and
above you can configure the Java VM to search for native libraries in a given directory
by setting the java.library.path property to the name of the directory, e.g.

java -Djava.library.path=. pdfclock

1. See http://java.sun.com

http://java.sun.com

2.5 Java Binding 27

You can check the value of this property as follows:

System.out.println(System.getProperty("java.library.path"));

In addition, the following platform-dependent steps must be performed:

Unix. The library libpdf_java.so must be placed in one of the default locations for
shared libraries, or in an appropriately configured directory (see Appendix A, »Shared
Libraries and DLLs« for details).

Windows. The library pdf_java.dll must be placed in the Windows system directory, or
a directory which is listed in the PATH environment variable.

Mac OS 9. The library pdf_java will be searched in the Systems Extensions folder, the MRJ
Libraries folder within the Extensions folder, and the folder where the starting applica-
tion lives (JBindery, for example).

PDFlib servlets and Java application servers. PDFlib is perfectly suited for server-side
Java applications, especially servlets. The PDFlib distribution contains examples of
PDFlib Java servlets which demonstrate the basic use. When using PDFlib with a specific
servlet engine the following configuration issues must be observed:
> The directory where the servlet engine looks for native libraries varies among ven-

dors. Common candidate locations are system directories, directories specific to the
underlying Java VM, and local directories of the servlet engine. Please check the doc-
umentation supplied by the vendor of your servlet engine.

> Servlets are often loaded by a special class loader which may be restricted, or use a
dedicated classpath. For some servlet engines it is required to define a special engine
classpath to make sure that the PDFlib package will be found.

More detailed notes on using PDFlib with specific servlet engines and Java application
servers can be found in additional documentation in the PDFlib distribution.

Note Since the EJB (Enterprise Java Beans) specification disallows the use of native libraries, PDFlib
cannot be used within EJBs.

2.5.3 The »Hello world« Example in Java
import java.io.*;
import com.pdflib.pdflib;

public class hello
{
 public static void main (String argv[]) throws

OutOfMemoryError, IOException, IllegalArgumentException,
IndexOutOfBoundsException, ClassCastException, ArithmeticException,
RuntimeException, InternalError, UnknownError

 {
int font;
pdflib p;

p = new pdflib();

if (p.open_file("hello_java.pdf") == -1) {
 System.err.println("Couldn't open PDF file hello_java.pdf\n");

28 Chapter 2: PDFlib Language Bindings

 System.exit(1);
}

p.set_info("Creator", "hello.java");
p.set_info("Author", "Thomas Merz");
p.set_info("Title", "Hello world (Java)");

p.begin_page(595, 842);

font = p.findfont("Helvetica-Bold", "host", 0);

p.setfont(font, 18);

p.set_text_pos(50, 700);
p.show("Hello world!");
p.continue_text("(says Java)");
p.end_page();

p.close();
 }
}

2.5.4 Error Handling in Java
The Java binding installs a special error handler which translates PDFlib errors to native
Java exceptions according to Table 2.3.

The Java exceptions can be dealt with by applying the appropriate language constructs,
i.e., by bracketing critical sections:

try {
...some PDFlib instructions...

} catch (Throwable e) {
System.err.println("Exception caught:\n" + e);

}

Table 2.3. Java exceptions thrown by PDFlib

PDFlib error name Java exception explanation
MemoryError java.lang.OutOfMemoryError not enough memory
IOError java.io.IOException input/output error, e.g. disk full
RuntimeError java.lang.IllegalArgumentException wrong order of PDFlib function calls
IndexError java.lang.IndexOutOfBoundsException array index error
TypeError java.lang.ClassCastException argument type error
DivisionByZero java.lang.ArithmeticException division by zero
OverflowError java.lang.ArithmeticException arithmetic overflow
SyntaxError java.lang.RuntimeException syntactical error
ValueError java.lang.IllegalArgumentException a value supplied as argument to

PDFlib is invalid
SystemError java.lang.InternalError PDFlib internal error, or

incompatible PDFlib library version
NonfatalError java.lang.UnknownError warnings (can be disabled)
UnknownError java.lang.UnknownError other error

2.6 .NET Binding 29

Since PDFlib declares appropriate throws clauses, client code must either catch all possi-
ble PDFlib exceptions, or declare those itself.

2.5.5 Version Control in Java
There is no intrinsic versioning scheme available for PDFlib Java clients. Applications
must use manual version control.

2.5.6 Unicode Support in Java
Java supports Unicode natively. The Java language wrapper automatically converts all
Java strings to Unicode or ISO Latin 1 (PDFDocEncoding), as appropriate. Java’s Unicode-
awareness, however, may lead to subtle problems regarding 8-bit encodings (such as
winansi) and Unicode characters in literal strings. More details on this issue can be
found in Section 3.3.9, »Unicode Support«.

Unicode characters can be written directly into code and string literals using a Uni-
code-aware text editor, or entered with an escape sequence such as

p.set_parameter("nativeunicode", "true");
Unicodetext = "\u039B\u039F\u0393\u039F\u03A3";

Note that your locale settings may affect the interpretation of strings in your Java code.

2.6 .NET Binding
(This section is not included in this edition of the PDFlib manual.)

2.7 Perl Binding
2.7.1 How does the Perl Binding work?

Perl1 supports a mechanism for extending the language interpreter via native C librar-
ies. The PDFlib wrapper for Perl consists of a C wrapper file and a Perl package module.
The C module is used to build a shared library which the Perl interpreter loads at run-
time, with some help from the package file. Perl scripts refer to the shared library mod-
ule via a use statement.

2.7.2 Installing the PDFlib Perl Edition
The Perl extension mechanism loads shared libraries at runtime through the DynaLoad-
er module. The Perl executable must have been compiled with support for shared librar-
ies (this is true for the majority of Perl configurations).

For the PDFlib binding to work, the Perl interpreter must access the PDFlib Perl wrap-
per and the module file pdflib_pl.pm. In addition to the platform-specific methods de-
scribed below you can add a directory to Perl’s @INC module search path using the -I
command line option:

perl -I/home/tm/pdflib/bind/perl/.libs hello.pl

1. See http://www.perl.com

http://www.perl.com

30 Chapter 2: PDFlib Language Bindings

Unix. Perl will search both pdflib_pl.so and pdflib_pl.pm in the current directory, or the
directory printed by the following Perl command:

perl -e 'use Config; print $Config{sitearchexp};'

Perl will also search the subdirectory auto/pdflib_pl. PDFlib’s install mechanism will
place the files in the correct directories. Typical output of the above command looks like

/usr/lib/perl5/site_perl/5.6/i686-linux

Windows. PDFlib supports the ActiveState port of Perl 5 to Windows, also known as
ActivePerl.1 Both pdflib_pl.dll and pdflib_pl.pm will be searched in the current directory,
or the directory printed by the following Perl command:

perl -e "use Config; print $Config{sitearchexp};"

Typical output of the above command looks like

C:\Program Files\Perl5.6\site\lib

Note ActivePerl 5.6 is not compatible to older versions of ActivePerl with respect to extension mod-
ules. For this reason pdflib_pl.dll cannot be shared between ActivePerl 5.6 and older versions.

Mac OS 9. Both the shared library pdflib_pl and pdflib_pl.pm will be searched in the cur-
rent folder, or in one of the following folders:

<MacPerl>:lib:MacPPC
<MacPerl>:lib

where <MacPerl> denotes the Perl installation folder. In order to run the supplied sam-
ples, start Perl and open the script via Script, Run Script. It should be noted that the gener-
ated PDF output ends up in the Perl interpreter’s folder if a relative file name is supplied
(as in the sample scripts).

2.7.3 The »Hello world« Example in Perl
use pdflib_pl 4.0.3;

$p = PDF_new();

die "Couldn't open PDF file" if (PDF_open_file($p, "hello_pl.pdf") == -1);

PDF_set_info($p, "Creator", "hello.pl");
PDF_set_info($p, "Author", "Thomas Merz");
PDF_set_info($p, "Title", "Hello world (Perl)");

PDF_begin_page($p, 595, 842);
$font = PDF_findfont($p, "Helvetica-Bold", "host", 0);

PDF_setfont($p, $font, 18.0);

PDF_set_text_pos($p, 50, 700);
PDF_show($p, "Hello world!");
PDF_continue_text($p, "(says Perl)");

1. See http://www.activestate.com

http://www.activestate.com

2.8 PHP Binding 31

PDF_end_page($p);
PDF_close($p);

PDF_delete($p);

2.7.4 Error Handling in Perl
The Perl binding installs a special error handler which translates PDFlib errors to native
Perl exceptions. The Perl exceptions can be dealt with by applying the appropriate lan-
guage constructs, i.e., by bracketing critical sections:

eval {
...some PDFlib instructions...

};
die "Exception caught" if $@;

2.7.5 Version Control in Perl
Perl’s package mechanism supports a major/minor version number scheme for exten-
sion modules which is used by the PDFlib Perl binding. PDFlib applications written in
Perl simply use the line

use pdflib_pl 4.0.3;

in order to make sure they will get the required library version (or a newer one).

2.7.6 Unicode Support in Perl
Perl developers must manually construct their Unicode strings according to Section
3.3.9, »Unicode Support«.

2.8 PHP Binding
2.8.1 How does the PHP Binding work?

The PHP hypertext processor1 supports a mechanism for extending the language inter-
preter via internal or external native C libraries. The PDFlib wrapper for PHP consists of
a C wrapper module. This module is used to build a shared library or DLL which is loaded
at runtime by the PHP interpreter.

The first PDFlib binding for PHP was pioneered by Uwe Steinmann. The current PHP
binding is based on Uwe’s excellent work. In order to better synchronize PDFlib and PHP
releases, and to supply a fully supported language binding for PHP, PDFlib includes an
extended PHP wrapper.

Modified error return for PDFlib functions in PHP. Since PHP uses the convention of re-
turning the value 0 (FALSE) when an error occurs within a function, all PDFlib functions
have been adjusted to return 0 instead of -1 in case of an error. This difference is noted
in the function descriptions in Section 4, »PDFlib and PDI API Reference«. However, take
care when reading the code fragment examples in Section 3, »PDFlib and PDI Program-
ming« since these use the usual PDFlib convention of returning -1 in case of an error.

1. See http://www.php.net

http://www.php.net

32 Chapter 2: PDFlib Language Bindings

2.8.2 Installing the PDFlib PHP Edition
In order to guarantee full functionality we extended the previous PHP wrapper code.
Our new PHP wrapper is included in PHP 4.05 and above, and is also included in PDFlib
4.0.0 and above. Other PHP PDFlib functions than those discussed in this manual are
not supported. If you are not using PHP 4.05 or above you must copy the PHP wrapper C
module distributed with PDFlib to your PHP directory and replace the old PDFlib wrap-
per which is included with PHP releases older than 4.05.

Detailed information about the various flavors and options for using PDFlib with
PHP, including the question of whether or not to use a loadable PDFlib module for PHP,
can be found in the readme.txt file which is part of the PDFlib source code and binary
distributions.

You must configure PHP so that it knows about the external PDFlib library. You have
two choices:
> Add one of the following lines in php.ini:

extension=libpdf_php.so ; for Unix
extension=php_pdf.dll ; for Windows

PHP will search the library in the directory specified in the extension_dir variable in
php.ini on Unix, and in the standard system directories on Windows. You can test
which version of the PHP PDFlib binding you have installed with the following one-
line PHP script:

<?phpinfo()?>

This will display a long info page about your current PHP configuration. On this page
check the section titled pdf. If this section contains PDFlib GmbH Version (and the
PDFlib version number) you are using the supported new PDFlib wrapper. The un-
supported old wrapper will display PDFlib Version instead.

> Load PDFlib at runtime with one of the following lines at the start of your script:

dl("libpdf_php.so"); # for Unix
dl("php_pdf.dll"); # for Windows

2.8.3 The »Hello world« Example in PHP
<?php
$p = PDF_new();
PDF_open_file($p, "");

PDF_set_info($p, "Creator", "hello.php");
PDF_set_info($p, "Author", "Rainer Schaaf");
PDF_set_info($p, "Title", "Hello world (PHP)");

PDF_begin_page($p, 595, 842);
$font = PDF_findfont($p, "Helvetica-Bold", "host", 0);
PDF_setfont($p, $font, 18.0);
PDF_set_text_pos($p, 50, 700);

PDF_show($p, "Hello world!");
PDF_continue_text($p, "(says PHP)");
PDF_end_page($p);
PDF_close($p);

$buf = PDF_get_buffer($p);

2.9 Python Binding 33

$len = strlen($buf);

header("Content-type: application/pdf");
header("Content-Length: $len");
header("Content-Disposition: inline; filename=hello_php.pdf");
print $buf;

PDF_delete($p);
?>

2.8.4 Error Handling in PHP
When a PDFlib exception occurs, a PHP exception is thrown. Unfortunately, PHP does
not yet support structured exception handling: there is no way to catch exceptions and
act appropriately. Do not disable PHP exceptions when using PDFlib or you will run into
serious trouble.

PDFlib warnings (nonfatal errors) are mapped to PHP warnings, which can be dis-
abled in php.ini. Alternatively, warnings can be disabled at runtime with a PDFlib func-
tion like in any other language binding:

PDF_set_parameter($p, "warning", "false");

2.8.5 Version Control in PHP
We are currently not aware of any intrinsic versioning scheme available for PHP. Start-
ing with PDFlib 4.0, PHP applications can use manual version control.

2.8.6 Unicode Support in PHP
PHP developers must manually construct their Unicode strings according to Section
3.3.9, »Unicode Support«.

2.9 Python Binding
2.9.1 How does the Python Binding work?

Python1 supports a mechanism for extending the language (interpreter) via native C li-
braries. The PDFlib wrapper for Python consists of a C wrapper file. The C module is used
to build a shared library which is loaded at runtime by the Python interpreter. The
shared library module is referred to from the Python script via an import statement.

2.9.2 Installing the PDFlib Python Edition
The Python extension mechanism works by loading shared libraries at runtime. For the
PDFlib binding to work, the Python interpreter must have access to the PDFlib Python
wrapper:

Unix. The library pdflib_py.so will be searched in the directories listed in the PYTHON-
PATH environment variable.

1. See http://www.python.org

http://www.python.org

34 Chapter 2: PDFlib Language Bindings

Windows. The library pdflib_py.dll will be searched in the directories listed in the PY-
THONPATH environment variable.

Note Python 2.0 is not compatible with older versions of Python with respect to extension modules.
For this reason pdflib_py.dll cannot be shared between Python 2.0 and older versions.

Mac OS 9. The library pdflib_py.ppc.slb will be searched in the Mac:Plugins folder of the
Python application folder.

2.9.3 The »Hello world« Example in Python
from sys import *
from pdflib_py import *

p = PDF_new()

if PDF_open_file(p, "hello_py.pdf") == -1:
print "Couldn't open PDF file 'hello_py.pdf'\n"
exit(2);

PDF_set_info(p, "Author", "Thomas Merz")
PDF_set_info(p, "Creator", "hello.py")
PDF_set_info(p, "Title", "Hello world (Python)")

PDF_begin_page(p, 595, 842)
font = PDF_findfont(p, "Helvetica-Bold", "host", 0)

PDF_setfont(p, font, 18.0)

PDF_set_text_pos(p, 50, 700)
PDF_show(p, "Hello world!")
PDF_continue_text(p, "(says Python)")
PDF_end_page(p)
PDF_close(p)

PDF_delete(p);

2.9.4 Error Handling in Python
The Python binding installs a special error handler which translates PDFlib errors to na-
tive Python exceptions according to Table 2.4. The Python exceptions can be dealt with
by applying the appropriate language constructs, i.e., by bracketing critical sections:

try:
...some PDFlib instructions...

except:
print 'Exception caught!'

Table 2.4. Python exceptions thrown by PDFlib

PDFlib error name Python exception explanation
MemoryError MemoryError not enough memory
IOError IOError input/output error, e.g. disk full
RuntimeError RuntimeError wrong order of PDFlib function calls
IndexError IndexError array index error
TypeError TypeError argument type error

2.10 RPG Binding 35

2.9.5 Version Control in Python
We are currently not aware of any intrinsic versioning scheme available for Python.
Currently PDFlib applications in Python must use manual version control.

2.9.6 Unicode Support in Python
Python developers must manually construct their Unicode strings according to Section
3.3.9, »Unicode Support«.

2.10 RPG Binding
(This section is not included in this edition of the PDFlib manual.)

2.11 Tcl Binding
2.11.1 How does the Tcl Binding work?

Tcl1 supports a mechanism for extending the language (interpreter) via native C librar-
ies. The PDFlib wrapper for Tcl consists of a C wrapper file. The C module is used to build
a shared library which is loaded at runtime by the Tcl interpreter. All PDFlib functions
are grouped into a single Tcl extension package. The shared library module must be re-
ferred to from the Tcl script via a package statement.

The Tcl extension mechanism works by loading shared libraries at runtime. The sup-
plied PDFlib binaries require Tcl 8.2 or above. The PDFlib wrapper code for Tcl can also be
compiled for Tcl 8.0 or 8.1, although Unicode support will be missing.

2.11.2 Installing the PDFlib Tcl Edition
For the PDFlib binding to work, the Tcl shell must have access to the PDFlib Tcl wrapper
shared library and the package index file pkgIndex.tcl. You can use the following idiom
in your script to make the library available from a certain directory (this may be useful
if you want to deploy PDFlib on a machine where you don’t have root privilege for in-
stalling PDFlib):

lappend auto_path /path/to/pdflib

DivisionByZero ZeroDivisionError division by zero
OverflowError OverflowError arithmetic overflow
SyntaxError SyntaxError syntactical error
ValueError ValueError a value supplied as argument to PDFlib is invalid
SystemError SystemError PDFlib internal error
NonfatalError RuntimeError warnings (can be disabled)
UnknownError RuntimeError other error

1. See http://dev.scriptics.com

Table 2.4. Python exceptions thrown by PDFlib

PDFlib error name Python exception explanation

http://dev.scriptics.com

36 Chapter 2: PDFlib Language Bindings

Unix. The library pdflib_tcl.so must be placed in one of the default locations for shared
libraries, or in an appropriately configured directory (see Appendix A, »Shared Libraries
and DLLs« for details). Usually both pkgIndex.tcl and pdflib_tcl.so will be placed in the di-
rectory

/usr/lib/tcl8.3/pdflib

Windows. The files pkgIndex.tcl and pdflib_tcl.dll will be searched for in the directories

C:\Program Files\Tcl\lib\pdflib
C:\Program Files\Tcl\lib\tcl8.3\pdflib

Mac OS 9. The files pdflib_tcl.shlb and pkgIndex.tcl will be searched in the Tcl shell’s fol-
der, and in the folders

System:Extensions:Tool Command Language:pdflib
System:Extensions:Tool Command Language:tcl8.3:pdflib

In order to run the supplied samples, start the Wish application and use the Source menu
command to locate the Tcl script. It should be noted that the generated PDF output ends
up in the Tcl shell’s folder if a relative file name is supplied (as in the sample scripts).

2.11.3 The »Hello world« Example in Tcl
package require pdflib 4.0.3

set p [PDF_new]

if {[PDF_open_file $p "hello_tcl.pdf"] == -1} {
 puts stderr "Couldn't open PDF file!"
 exit
}

PDF_set_info $p "Creator" "hello.tcl"
PDF_set_info $p "Author" "Thomas Merz"
PDF_set_info $p "Title" "Hello world (Tcl)"

PDF_begin_page $p 595 842
set font [PDF_findfont $p "Helvetica-Bold" "host" 0]

PDF_setfont $p $font 18.0

PDF_set_text_pos $p 50 700
PDF_show $p "Hello world!"
PDF_continue_text $p "(says Tcl)"
PDF_end_page $p
PDF_close $p

PDF_delete $p

2.11.4 Error Handling in Tcl
The Tcl binding installs a special error handler which translates PDFlib errors to native
Tcl exceptions. The Tcl exceptions can be dealt with by applying the appropriate lan-
guage constructs, i.e., by bracketing critical sections:

2.11 Tcl Binding 37

if [catch { ...some PDFlib instructions... } result] {
puts stderr "Exception caught!"
puts stderr $result

}

2.11.5 Version Control in Tcl
Tcl’s package mechanism supports a major/minor version number scheme for exten-
sion modules which is used by the PDFlib Tcl binding. PDFlib applications written in Tcl
simply use the line

package require pdflib 4.0.3

in order to make sure they will get the required library version or a newer one.

2.11.6 Unicode Support in Tcl
Starting with version 8.2, Tcl supports Unicode natively. The Tcl language wrapper auto-
matically converts all Tcl strings to Unicode or ISO Latin 1 (PDFDocEncoding), as appro-
priate. Tcl’s Unicode-awareness, however, may lead to subtle problems regarding 8-bit
encodings (such as winansi) and Unicode characters in literal strings. More details on
this issue can be found in Section 3.3.9, »Unicode Support«.

Unicode characters can be written directly into code and string literals using a Uni-
code-aware text editor, or entered with an escape sequence such as

PDF_set_parameter $p "nativeunicode" "true"
set Unicodetext "\u039B\u039F\u0393\u039F\u03A3"

38 Chapter 3: PDFlib and PDI Programming

3 PDFlib and PDI Programming

3.1 General Programming Issues
3.1.1 PDFlib Program Structure

PDFlib applications must obey certain structural rules which are very easy to under-
stand. Writing applications according to these restrictions is straightforward. For exam-
ple, you don’t have to think about opening a page first before closing it. Since the PDFlib
API is very closely modelled after the document/page paradigm, generating documents
the »natural« way usually leads to well-formed PDFlib client programs.

PDFlib enforces correct ordering of function calls with a strict scoping system (see
Section 4.1, »Data Types, Naming Conventions, and Scope«). The function descriptions
document the allowed scope for a particular functions. Calling a function from a differ-
ent scope will immediately trigger a PDFlib exception. PDFlib will also throw an excep-
tion if bad parameters are supplied by a library client.

3.1.2 Generating PDF Documents directly in Memory
In addition to generating PDF documents on a file, PDFlib can also be instructed to gen-
erate the PDF directly in memory (in-core). This technique offers performance benefits
since no disk-based I/O is involved, and the PDF document can, for example, directly be
streamed via HTTP. Webmasters will be especially happy to hear that their server will
not be cluttered with temporary PDF files. Unix users can write the generated PDF to the
stdout channel and consume it in a pipe process by supplying »–« as filename for PDF_
open_file().

You may, at your option, periodically collect partial data (e.g., every time a page has
been finished), or fetch the complete PDF document in one big chunk at the end (after
PDF_close()). Interleaving production and consumption of the PDF data has several ad-
vantages. Firstly, since not all data must be kept in memory, the memory requirements
are reduced. Secondly, such a scheme can boost performance since the first chunk of
data can be transmitted over a slow link while the next chunk is still being generated.
However, the total length of the generated data will only be known when the complete
document is finished.

The active in-core PDF generation interface. In order to generate PDF data in memory,
simply supply an empty filename to PDF_open_file(), and retrieve the data with PDF_
get_buffer():

PDF_open_file(p, "")
...create document...
PDF_close(p);

buf = PDF_get_buffer(p, &size);
... use the PDF data contained in the buffer ...
PDF_delete(p);

Note Fetching PDF data from a buffer requires binary access, and may not be usable from all envi-
ronments due to restrictions of the respective development environment.

3.1 General Programming Issues 39

This is considered »active« mode since the client decides when he wishes to fetch the
buffer contents. Active mode is available for all supported language bindings.

Note C and C++ clients must not free the returned buffer.

The passive in-core PDF generation interface. In »passive« mode, which is only avail-
able in the C and C++ language bindings, the user installs (via PDF_open_mem()) a call-
back function which will be called at unpredictable times by PDFlib whenever PDF data
is waiting to be consumed. Timing and buffer size constraints related to flushing (trans-
ferring the PDF data from the library to the client) can be configured by the client in or-
der to provide for maximum flexibility. Depending on the environment, it may be ad-
vantageous to fetch the complete PDF document at once, in multiple chunks, or in
many small segments in order to prevent PDFlib from increasing the internal docu-
ment buffer. The flushing strategy can be set using PDF_set_parameter() and the flush
parameter values detailed in Table 3.1.

3.1.3 Error Handling
Errors of a certain kind are called exceptions in many languages for good reasons – they
are mere exceptions, and are not expected to occur very often during the lifetime of a
program. The general strategy, then, is to use conventional error reporting mechanisms
(read: special function return codes) for function calls which may go wrong often times,
and use a special exception mechanism for those rare occasions which don’t warrant
cluttering the code with conditionals. This is exactly the path that PDFlib goes: Some
operations can be expected to go wrong rather frequently, for example:
> Trying to open an output file for which one doesn’t have permission
> Using a font for which metrics information cannot be found
> Trying to open a corrupt image file
> Trying to import an encrypted PDF file

PDFlib signals such errors by returning a special value (usually – 1, but 0 in the PHP
binding) as documented in the API reference. Other events may be considered harmful,
but will occur rather infrequently, e.g.
> running out of virtual memory
> scope violations (e.g., closing a document before opening it)
> supplying wrong parameters to PDFlib API functions (e.g., trying to draw a circle with

a negative radius)

If the library detects such an exceptional situation, an error handler is called in order to
deal with the situation, instead of passing special return values to the caller. Obviously,

Table 3.1. Controlling PDFlib’s flushing strategy with the flush parameter

flush parameter flushing strategy benefits
none flush only once at the end of the

document
complete PDF document can be fetched by
the client in one chunk

page flush at the end of each page generating and fetching pages can be nicely
interleaved

content flush after all fonts, images, file
attachments, and pages

even better interleaving, since large items
won’t clog the buffer

heavy always flush when the internal 64
KB document buffer is full

PDFlib’s internal buffer will never grow
beyond a fixed size

40 Chapter 3: PDFlib and PDI Programming

the appropriate way to deal with an error heavily depends on the language used for
driving PDFlib. For this reason, details on error handling are given in the language-spe-
cific sections in Chapter 2. Generally, we let C clients decide what to do by installing a
custom error handler in PDFlib, or propagate the error to the language’s native excep-
tion handling mechanism (all other language bindings). In the case of native language
exceptions, the library client has the choice of catching exceptions and appropriately
dealing with them, using the means of the respective language.

PDFlib exceptions fall into one of several categories as shown in Table 3.2. The error
handler will receive the type of PDFlib error along with a descriptive message, and
present it to the user (for most language bindings), or perform custom operations if a
user-supplied error handler was installed (for C).

Non-fatal error messages (warnings) generally indicate some problem in your PDFlib
code which you should investigate more closely. However, processing may continue in
case of non-fatal errors. For this reason, you can suppress warnings using the following
function call:

PDF_set_parameter(p, "warning", "false");

The suggested strategy is to enable warnings during the development cycle (and closely
examine possible warnings), and disable warnings in a production system.

3.2 Page Descriptions
3.2.1 Coordinate Systems

PDF’s default coordinate system is used within PDFlib. The default coordinate system
(or default user space in PDF lingo) has the origin in the lower left corner of the page,
and uses the DTP point as unit:

1 pt = 1 inch / 72 = 25.4 mm / 72 = 0.3528 mm

The first coordinate increases to the right, the second coordinate increases upwards.
PDFlib client programs may change the default user space by rotating, scaling, translat-
ing, or skewing, resulting in new user coordinates. The respective functions for these

Table 3.2. PDFlib runtime errors

error name explanation
MemoryError not enough memory
IOError input/output error, e.g. disk full
RuntimeError wrong order of PDFlib function calls
IndexError array index error
TypeError argument type error
DivisionByZero division by zero
OverflowError arithmetic overflow
SyntaxError syntactical error
ValueError a value supplied as argument to PDFlib is invalid
SystemError PDFlib internal error
NonfatalError non-fatal problem. Warnings can be suppressed using PDF_set_parameter().
UnknownError other error

3.2 Page Descriptions 41

transformations are PDF_rotate(), PDF_scale(), PDF_translate(), and PDF_skew(). If the
user space has been transformed, all coordinates in graphics and text functions must be
supplied according to the new coordinate system. The coordinate system is reset to the
default coordinate system at the start of each page.

In order to assist PDFlib users in working with PDF’s coordinate system, the PDFlib
distribution contains the PDF file grid.pdf which visualizes the coordinates for several
common page sizes. Printing the appropriately sized page on transparent material (take
care to use suitable material since cheap overhead transparencies do not withstand
heat, and may ruin your laser printer!) may provide a useful tool for preparing PDFlib
development.

Acrobat 5 (full version only, not the free Reader) also has a helpful facility. Simply
choose Window, Info to display a measurement palette which uses points as units. Note
that the coordinates displayed refer to an origin in the top left corner of the page, and
not PDF’s default origin in the lower left corner.

Don’t be mislead by PDF printouts which seem to experience wrong page dimen-
sions. These may be wrong because of some common reasons:
> The Fit to Page (or Shrink oversized pages to paper size) option has been checked in

Acrobat’s print dialog, resulting in scaled print output.
> Non-PostScript printer drivers are not always able to retain the exact size of printed

objects.

Note Hypertext functions, such as those for creating text annotations, links, and file annotations are
not affected by user space transformations, and always use the default coordinate system in-
stead.

Using metric coordinates. Metric coordinates can easily be used by scaling the coor-
dinate system. The scaling factor is derived from the definition of the DTP point given
above:

PDF_scale(p, 28.3465, 28.3465);

After this call PDFlib will interpret all coordinates (except for hypertext features, see
above) in centimeters since 72 / 2.54 = 28.3465.

Rotating objects. It is important to understand that objects cannot be modified once
they have been drawn on the page. Although there are PDFlib functions for rotating,
translating, scaling, and skewing the coordinate system, these do not affect existing ob-
jects on the page but only subsequently drawn objects.

The following example generates some horizontal text, and rotates the coordinate
system in order to show vertical text. The save/restore nesting makes it easy to contin-
ue with horizontal text in the original coordinate system after the vertical text is done:

PDF_set_text_pos(p, 50, 600);
PDF_show(p, "This is horizontal text");
textx = PDF_get_value(p, "textx", 0); /* determine text position*/
texty = PDF_get_value(p, "texty", 0); /* determine text position */

PDF_save(p);
PDF_translate(p, textx, texty); /* move origin to end of text */
PDF_rotate(p, 90); /* rotate coordinates */
PDF_set_text_pos(p, 18, 0); /* provide for distance from horiz. text */
PDF_show(p, "vertical text");

42 Chapter 3: PDFlib and PDI Programming

PDF_restore(p);

PDF_continue_text(p, "horizontal text continues");

Using top-down coordinates. Unlike PDF’s bottom-up coordinate system some graph-
ics environments use top-down coordinates which may be preferred by some develop-
ers. Such a coordinate system can easily be established using PDFlib’s transformation
functions. However, since the transformations will also affect text output additional
calls are required in order to avoid text being displayed in a mirrored sense. In order to
set up a coordinate system with the origin in the top left corner of the page and the y co-
ordinate pointing downwards while maintaining the usual text direction (text stands
upright on the page) use the following code sequence:

PDF_begin_page(p, width, height); /* set up the page dimensions */
PDF_translate(p, 0, height); /* move the coordinate origin */
PDF_scale(p, 1, -1); /* reflect at the horiz. axis */

font = PDF_findfont(p, "Helvetica-Bold", "host", 0); /* sample text */
PDF_setfont(p, font, -18.0); /* make the text point upwards */
PDF_set_value(p, "horizscaling", -100); /* compensate for the mirroring */

PDF_set_text_pos(p, 50, 100); /* now use top-down coordinates */
PDF_show(p, "Hello world!");

In order to format text into a text box with the upper left corner at (x, y), width w, and
height h use the following idiom (this is required because the function adds h to the
starting y position, and text with negative font size runs in the »other« direction):

c = PDF_show_boxed(p, text, x, y-h, w, h, "justify", "");

Similarly, the following idiom can be used in order to correctly place images when using
top-down coordinates:

/* Place the image in the lower left corner of the page */
PDF_save(p);

PDF_translate(p, 0, height); /* temporarily translate origin to lower left */
PDF_scale(p, 1, -1);
PDF_place_image(p, lImage, 0, 0, 1);

PDF_restore(p);

3.2.2 Page and Coordinate Limits

Page sizes. Although PDF and PDFlib don’t impose any restrictions on the usable page
size, Acrobat implementations suffer from architectural limits regarding the page size.
Note that other PDF interpreters may well be able to deal with larger or smaller docu-
ment formats. If run in Acrobat 3 compatibility mode PDFlib will throw a PDF_Runtime-
Error exception if the Acrobat 3 limits are exceeded; if run in Acrobat 4 (the default) or 5
compatibility mode and the Acrobat 4 limits are exceeded, PDFlib will only issue a non-
fatal warning message. The page size limits for Acrobat versions are shown in Table 3.3;
common standard page size dimensions can be found in Table 4.26.

Different page size boxes. While many PDFlib developers only specify the width and
height of a page, some advanced applications (especially for prepress work) may want
to specify one or more of PDF’s additional box entries. PDFlib supports all of the box en-

3.2 Page Descriptions 43

tries of Acrobat 4/PDF 1.3. The following entries, which may be useful in certain environ-
ments can be specified by PDFlib clients (definitions taken from the PDF reference):
> MediaBox: this is used to specify the width and height of a page, and describes what

we usually consider the page size.
> CropBox: the region to which the page contents are to be clipped; Acrobat uses this

size for screen display and printing.
> TrimBox: the intended dimensions of the finished (possibly cropped) page;
> ArtBox: extent of the page’s meaningful content. It is rarely used by application soft-

ware;
> BleedBox: the region to which the page contents are to be clipped when output in a

production environment. It may encompass additional bleed areas to account for in-
accuracies in the production process.

PDFlib will not use any of these values apart from recording it in the output file. By de-
fault PDFlib generates a MediaBox according to the specified width and height of the
page, but does not generate any of the other entries. The following code fragment will
start a new page and set the four values of the CropBox:

PDF_begin_page(p, 595, 842); /* start a new page */
PDF_set_value(p, "CropBox/llx", 10);
PDF_set_value(p, "CropBox/lly", 10);
PDF_set_value(p, "CropBox/urx", 500);
PDF_set_value(p, "CropBox/ury", 800);

Number of pages in a document. There is no intrinsic limit in PDFlib regarding the
number of generated pages in a document. While previous versions of PDFlib generated
output which resulted in bad Acrobat performance when navigating large files, PDFlib 4
introduces an improvement in the generated PDF structures which significantly accel-
erates document navigation in Acrobat even for documents with hundreds of thou-
sands of pages.

Output accuracy and coordinate range. PDFlib’s numerical output accuracy has been
carefully chosen to match the requirements of PDF and the supported environments,
while at the same time minimizing output file size. As detailed in Table 3.4 PDFlib’s ac-
curacy depends on the absolute value of coordinates. While most developers may safely
ignore this issue, demanding applications should take care in their scaling operations
in order to not exceed PDF’s built-in coordinate limits.

Table 3.3. Minimum and maximum page size of several PDF consumers

PDF viewer minimum page size maximum page size
Acrobat 3 1" = 72 pt = 2.54 cm 45" = 3240 pt = 114.3 cm
Acrobat 4 and 5 1/24" = 3 pt = 0.106 cm 200" = 14400 pt = 508 cm

Table 3.4. Output accuracy and coordinate range

absolute value output
0 ... 0.000015 0
0.000015 ... 32767.999999 rounded to four decimal digits
32768 ... 231- 1 rounded to next integer
>= 231 an exception of type ValueError will be raised

44 Chapter 3: PDFlib and PDI Programming

3.2.3 Paths and Color

Graphics paths. A path is a shape made of an arbitrary number of straight lines, rect-
angles, or curves. A path may consist of several disconnected sections, called subpaths.
There are several operations which can be applied to a path (see Section 4.4.5, »Path
Painting and Clipping«):
> Stroking draws a line along the path, using client-supplied parameters for drawing.
> Filling paints the entire region enclosed by the path, using client-supplied parame-

ters for filling.
> Clipping reduces the imageable area for subsequent drawing operations by replacing

the current clipping area (which is the page size by default) with the intersection of
the current clipping area and the area enclosed by the path.

> Merely terminating the path results in an invisible path, which will nevertheless be
present in the PDF file. This will only rarely be required.

It is an error to construct a path without applying one of the above operations on it.
PDFlib’s scoping system ensures that clients obey to this restriction. These rules may
easily be summarized as »don’t change the appearance within a path description«.

Merely constructing a path doesn’t result in anything showing up on the page; you
must either fill or stroke the path in order to get visible results:

PDF_moveto(p, 100, 100);
PDF_lineto(p, 200, 100);
PDF_stroke(p);

Most graphics functions make use of the concept of a current point, which can be
thought of as the location of the pen used for drawing.

Color. PDFlib clients may specify the colors used for filling and stroking the interior of
paths and text characters. Colors may be specified in several color spaces:
> gray values between 0=black and 1=white;
> RGB triples, i.e., three values between 0 and 1 specifying the percentage of red, green,

and blue; (0, 0, 0)=black, (1, 1, 1)=white;
> four CMYK values between 0=no color and 1=full color, representing cyan, magenta,

yellow, and black values; (0, 0, 0, 0)=white, (0, 0, 0, 1)=black. Note that this is different
from the RGB specification.

> spot color (separation color space): an arbitrarily named color with an alternate rep-
resentation in one of the other color spaces above; this is generally used for prepar-
ing documents which are intended to be printed on an offset printing machine with
one or more custom colors. The tint value (percentage) ranges from 0=no color to
1=maximum intensity of the spot color.

> pattern: tiling with an object composed of arbitrary text, vector, or image graphics
(patterns are not supported in Acrobat 3 compatibility mode since they don’t show
up on screen with Acrobat 3).

The default value for stroke and fill color is black, i.e. (0, 0, 0) in the RGB color space.

3.2 Page Descriptions 45

3.2.4 Templates

Templates in PDF. PDFlib supports a PDF feature with the technical name form
XObjects. However, since this term conflicts with interactive forms we refer to this fea-
ture as templates. A PDFlib template can be thought of as an off-page buffer into which
text, vector, and image operations are redirected (instead of acting on a regular page).
After the template is finished it can be used much like a raster image, and placed an ar-
bitrary number of times on arbitrary pages. Like images, templates can be subjected to
geometrical transformations such as scaling or skewing. When a template is used on
multiple pages (or multiply on the same page), the actual PDF operators for construct-
ing the template are only included once in the PDF file, thereby saving PDF output file
size. Templates suggest themselves for elements which appear repeatedly on several
pages, such as a constant background, a company logo, or graphical elements emitted
by CAD and geographical mapping software. Other typical examples for template usage
include crop and registration marks or custom Asian glyphs.

Please refer to Section 3.5.4, »PDF Import, Templates and graphics/text state inherit-
ance« for important information on graphics properties for templates.

Note PDF templates are an efficient means for saving space in a PDF file. However, this advantage is
usually not retained when printing template-based PDF files to a PostScript printer. Depending
on the number of templates used, you should be prepared for print jobs which are significantly
larger than the corresponding PDF files.

Using templates with PDFlib. Templates can only be defined outside of a page descrip-
tion, and can be used within a page description. However, templates may also contain
other templates. Obviously, using a template within its own definition is not possible.
Referring to an already defined template on a page is achieved with the PDF_place_
image() function just like images are placed on the page (see Section 3.4.2, »Code Frag-
ments for Common Image Tasks«). The general template idiom in PDFlib looks as fol-
lows:

/* define the template */
template = PDF_begin_template(p, template_width, template_height);
...place marks on the template using text, vector, and image functions...
PDF_end_template(p);
...
PDF_begin_page(p, page_width, page_height);
/* use the template */
PDF_place_image(p, template, (float) 0.0, (float) 0.0, (float) 1.0);
...more page marking operations...
PDF_end_page(p);
...
PDF_close_image(p, template);

All text, graphics, and color functions can be used on a template. However, the follow-
ing functions must not be used while constructing a template:
> The functions in Section 4.6, »Image Functions«, except PDF_place_image() and PDF_

close_image(). This is not a big restriction since images can be opened outside of a
template definition, and freely be used within a template (but not opened).

> The functions in Section 4.8, »Hypertext Functions«. Hypertext elements must al-
ways be defined on the page where they should appear in the document, and cannot
be generated as part of a template.

46 Chapter 3: PDFlib and PDI Programming

Note You can apply all image manipulation algorithms in Section 3.4.2, »Code Fragments for Com-
mon Image Tasks« to templates, too. Simply substitute the template width for PDF_get_value
(p, "imagewidth", image), similarly for template and image height.

Template support in third-party software. Templates (form XObjects) are an integral
part of the PDF specification, and can be perfectly viewed and printed with Acrobat.
However, since this type of PDF construct is rarely generated by Acrobat Distiller, not all
PDF consumers are prepared to deal with it. For example, not even Acrobat 4’s touch-up
tool can be used for manipulating templates (this has been fixed in Acrobat 5). Similar-
ly, the PitStop 5 PDF editor can only move templates, but cannot access individual ele-
ments within a template. On the other hand, Adobe Illustrator 9 and 10 fully support
templates.

3.3 Text Handling
3.3.1 The PDF Core Fonts

PDF viewers support a core set of 14 fonts which need not be embedded in any PDF file.
Even when a font isn’t embedded in the PDF file, PDF and therefore PDFlib need to know
about the widths of individual characters. For this reason, metrics information for the
core fonts is already built into the PDFlib binary. However, the builtin metrics informa-
tion is only available for the native host encoding (see below). Using another encoding
than the host encoding requires metrics information files. Metrics files for the PDF core
fonts are included in the PDFlib distribution in order to make it possible to use encod-
ings other than the host encoding. The core fonts are the following:

Courier, Courier-Bold, Courier-Oblique, Courier-BoldOblique,
Helvetica, Helvetica-Bold, Helvetica-Oblique, Helvetica-BoldOblique,
Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic,
Symbol, ZapfDingbats

3.3.2 8-Bit Encodings built into PDFlib
PDF supports flexible text encodings (the mapping of numerical code values to charac-
ter glyphs) for 8-bit text fonts. Encoding vectors are referred to via symbolic names. Ta-
ble 3.5 lists the symbolic encoding names supported internally by PDFlib. Additional en-
codings are available in external encoding files distributed with PDFlib (see below), or
can be defined by the user (see Section 3.3.3, »Custom Encoding and Code Page Files for
8-Bit Encodings«). All supported encodings can be arbitrarily mixed in one document.
You may even use different encodings for a single font, although the need to do so will
only rarely arise.

Note Not all encodings can be used with a given font. The user is responsible for making sure that
the font contains all characters required by a particular encoding. This can even be problematic
with Acrobat’s core fonts (see Table 3.6).

The winansi encoding. This encoding reflects the Windows ANSI character set, more
specifically code page 1252 including the three characters which Microsoft added for
Windows 98/2000/XP (Euro, Zcaron, and zcaron). The winansi encoding is a superset of
ISO 8859-1 (Latin-1) and can therefore also be used on Unix systems.

3.3 Text Handling 47

Note Most PostScript fonts do not yet contain the three additional Windows characters. They are
supported by the core fonts in Acrobat 4 and 5, however.

The macroman encoding. This encoding reflects the Mac OS character set, albeit with
the old currency symbol at position 219, and not the Euro character as redefined by Ap-
ple (this incompatibility is dictated by the PDF specification). Also, this encoding does
not include the Apple glyph and the mathematical symbols as defined in the Mac OS
character set.

The ebcdic encoding. This encoding relates to the EBCDIC (Extended Binary Coded
Decimal Interchange Code) defined by IBM and used on the IBM AS/400, S/390, and other
midrange and mainframe systems. More specifically, PDFlib’s ebcdic encoding uses the
EBCDIC code page 1047. As with all other PDFlib encodings, ebcdic encoding is always
available for generating PDF output, and not only on native EBCDIC machines. The dif-
ference, however, is that on those machines the built-in metrics for the core fonts are
sorted according to ebcdic encoding, and that host encoding (see below) also relates to
ebcdic encoding.

The builtin encoding. The encoding name builtin doesn’t describe a particular charac-
ter ordering but rather means »take this font as it is, and don’t mess around with the
character set«. This concept is sometimes called a »font specific« encoding and is very
important when it comes to non-text fonts (such as logo and symbol fonts), or non-
Latin text fonts (such as Greek and Cyrillic). Such fonts cannot be reencoded using one
of the supported encodings since their character names don’t match those in these en-
codings. Therefore, builtin must be used for all symbolic or non-text fonts, such as Sym-
bol and ZapfDingbats. Non-text fonts can be recognized by the following entry in their
AFM file:

EncodingScheme FontSpecific

Text fonts can be reencoded (adjusted to a certain code page or character set), while
symbolic fonts can’t, and must use builtin encoding instead.

Note Unfortunately, many typographers and font vendors didn’t fully grasp the concept of font spe-
cific encodings (this may be due to less-than-perfect production tools). For this reason, there
are many Latin text fonts labeled as FontSpecific encoding, and many symbol fonts incorrectly
labeled as text fonts.

The host encoding. Like builtin, the host encoding plays a special role since it doesn’t
refer to some fixed character set. Instead, host encoding will be mapped to macroman on
the Mac, ebcdic on EBCDIC-based systems, and winansi on all others. The host encoding is

Table 3.5. Builtin character encodings supported by PDFlib

encoding description
winansi Windows code page 1252, a superset of ISO 8859-1
macroman Mac Roman encoding, i.e., the default Macintosh character set
ebcdic EBCDIC code page 1047 as used on IBM AS/400 and S/390 systems
builtin Original encoding used by non-text (symbol) or non-Latin text fonts
host macroman on the Mac, ebcdic on EBCDIC-based systems, and winansi on all others

48 Chapter 3: PDFlib and PDI Programming

primarily useful as a vehicle for writing platform-independent test programs (like those
contained in the PDFlib distribution) or other encoding-wise simple applications. As-
suming that PDFlib client programs are always encoded in the host’s native encoding,
such programs will always generate PDF text output with the »correct« encoding. Con-
trary to all other aspects of PDFlib, the concept of a host encoding is inherently non-por-
table. For this reason host encoding is not recommended for production use, but should
be replaced by winansi or whatever encoding is appropriate.

3.3.3 Custom Encoding and Code Page Files for 8-Bit Encodings
In addition to a number of predefined encodings (see Section 3.3.2, »8-Bit Encodings
built into PDFlib«) PDFlib supports user-defined 8-bit encodings in order to make
PDFlib’s font handling even more flexible. User-defined encodings are the way to go if
you want to deal with some character set which is not internally available in PDFlib,
such as EBCDIC character sets different from the one supported internally in PDFlib. In
addition to encoding tables defined by PostScript glyph names PDFlib also accepts code
page tables which describe a mapping from Unicode to a set of up to 256 characters.
These characters can be accessed with 8-bit character codes.

The following tasks must be done before a user-defined encoding can be leveraged in
a PDFlib program:
> Generate a description of the encoding in a simple text format.
> Configure the encoding in the PDFlib resource file (see Section 3.3.7, »Resource Con-

figuration and the UPR Resource File«) or via PDF_set_parameter().
> Provide a font (metrics and possibly outline file) that supports all characters used in

the encoding. Of course, the characters in the font must use the correct PostScript
glyph names as defined in the encoding table.

The encoding file simply lists glyph names and numbers line by line. As an example, the
following excerpt shows the encoding definition for the ISO 8859-2 (Latin 2) character
set:

% Encoding definition for PDFlib
% ISO 8859-2 (Latin-2)
space 32 % 0x20
exclam 33 % 0x21
...more glyph assignments...
tcommaaccent 254 % 0xFE
dotaccent 255 % 0xFF

The next example shows a snippet from a Unicode code page for the same ISO 8859-2
character set:

% Code page definition for PDFlib
% ISO 8859-2 (Latin-2)
0x0020 32 % 0x20
0x0021 33 % 0x21
...more glyph assignments...
0x0163 254 % 0xFE
0x02D9 255 % 0xFF

More formally, the contents of an encoding or code page file are governed by the follow-
ing rules:

3.3 Text Handling 49

> Comments are introduced by a percent ’%’ character, and terminated by the end of
the line.

> The first entry in each line is either a PostScript character name or a hexadecimal
Unicode value composed of a 0x prefix and four hex digits (upper or lower case). This
is followed by whitespace and a hexadecimal or decimal character code in the deci-
mal range 0–255. Only Unicode values in the Adobe Glyph List (AGL) are allowed (see
Section 3.3.9, »Unicode Support«).

> Character codes which are not mentioned in the encoding file are assumed to be un-
defined. Alternatively, a Unicode value of 0x0000 or the character name .notdef can
be used for unencoded characters.

As a naming convention we refer to name-based tables as encoding files (*.enc), and Uni-
code-based tables as code page files (*.cpg), although actually PDFlib treats both kinds in
the same way (and doesn’t care about file names). In fact, PDFlib will automatically con-
vert between name-based encoding files and Unicode-based code page files whenever it
is necessary. This conversion is based on Adobe’s standard list of PostScript glyph
names (the Adobe Glyph List, or AGL1). The AGL is built into PDFlib, and contains more
than 1000 glyph names. Encoding files are required for PostScript fonts with non-stan-
dard glyph names, while code pages are more convenient when dealing with Unicode-
based TrueType fonts.

The relationship between the name of the encoding file and the name of the actual
encoding (to be used with PDF_findfont()) is specified in PDFlib’s resource file or via PDF_
set_parameter() (see Section 3.3.7, »Resource Configuration and the UPR Resource File«).

Distributed encoding files. The PDFlib distribution contains several encoding and
code page files which may be useful if you need to use one of the supplied encodings di-
rectly, or want to use it as a starting point for writing your own encoding files. In order
to use these, the PDFlib resource configuration file and font metrics files must be acces-
sible (see Section 3.3.7, »Resource Configuration and the UPR Resource File«).

Table 3.6 lists the code pages distributed with PDFlib, and details their use with sev-
eral important classes of fonts. For example, Acrobat standard fonts do not contain all
characters required for ISO 8859-2 or ISO 8859-5, while PostScript 3, OpenType Pro, and
TrueType »big fonts« do.

System encoding support and CCSIDs. In addition to built-in and user-defined encod-
ings, PDFlib can also be instructed to fetch encoding definitions from the operating sys-
tem. This is very convenient since it frees you from implementing the code page defini-
tion yourself and configuring it via the UPR file.

The host encoding feature is platform-dependent, and is currently only available on
IBM eServer iSeries with OS/400 and IBM eServer zSeries with USS or MVS. Instead of
supplying the name of a built-in or user-defined encoding for PDF_findfont(), simply use
an encoding name which is known to the system (more specifically, to the iconv facility).
On IBM systems any Coded Character Set Identifier (CCSID) can be used. The CCSID must
be supplied as a string. PDFlib will fetch the corresponding code page definition from
the system and transform it appropriately for internal use. The exact syntax for the
code page name and the range of supported code pages are system-specific:
> On iSeries PDFlib will apply the prefix IBMCCSID to the supplied code page number

automatically. PDFlib will also add leading 0 characters if the code page number uses

1. The AGL can be found at http://partners.adobe.com/asn/developer/type/glyphlist.txt

http://partners.adobe.com/asn/developer/type/glyphlist.txt

50 Chapter 3: PDFlib and PDI Programming

Table 3.6. Character encodings distributed with PDFlib, and their use with several classes of fonts

code page supported languages
PS Level 1/2,
Acrobat 4/51 PostScript 32

OpenType
Pro Fonts3

»Big Fonts«,
e.g., Tahoma

iso8859-1
(Latin-1)

Western European languages yes yes yes yes

iso8859-2
(Latin-2)

Slavic languages of Central Europe no yes yes yes4

iso8859-3
(Latin-3)

Esperanto and Maltese no no yes yes

iso8859-4
(Latin-4)

Estonian, the Baltic languages, and
Greenlandic

no no yes yes

iso8859-5 Bulgarian, Russian, and Serbian4 no no yes yes
iso8859-6 Arabic no no no yes
iso8859-7 Modern Greek no no 2 characters

missing
yes

iso8859-8 Hebrew and Yiddish4 no no no yes
iso8859-9
(Latin-5)

Western European and Turkish 5 characters
missing

yes yes yes5

iso8859-10
(Latin-6)

Nordic languages (variation of
Latin-4)

no no 1 character
missing

yes

iso8859-13
(Latin-7)

Baltic languages no yes yes yes

iso8859-14
(Latin-8)

Celtic6 no no no no

iso8859-15
(Latin-9)

Adds the Euro and some French and
Finnish characters to Latin-1

yes7 yes yes yes

iso8859-16
(Latin-10)

Hungarian, Polish, Romanian, and
Slovenian

no yes yes yes

cp1250 Central European no yes yes yes
cp1251 Cyrillic4 no no yes yes
cp1252 Western European yes yes yes yes
cp1253 Greek no no 2 characters

missing
yes

cp1254 Turkish 5 characters
missing

yes yes yes5

cp1255 Hebrew4 no no no yes
cp1256 Arabic no no no 5 characters

missing
cp1257 Baltic no yes yes yes
cp1258 Viet Nam no no no yes

1. Original Adobe Latin character set (Type 1 Fonts since 1982)
2. Extended Adobe Latin character set (CE-Fonts) (Type 1 Fonts since PostScript 3)
3. Closely resembles the Adobe Glyph List.
4. Does not correctly work in Acrobat 4. This has been fixed in Acrobat 5.
5. Acrobat 4 does not correctly display the character »Capital I with dot above« (221 = 0xDD), while Acrobat 5 does.
6. 14 characters will not work in Acrobat 4/5 since they are outside the Adobe Glyph List (AGL).
7. Except the Euro glyph in PostScript Level 1 and 2.

3.3 Text Handling 51

fewer than 5 characters. Supplying 0 (zero) as the code page number will result in the
current job’s encoding to be used.

> On zSeries PDFlib will pass the supplied code page name to the system literally, with-
out applying any change.

The following examples fetch the German EBCDIC code page, provided it is available on
the system:

PDF_findfont(p, "Helvetica", "273", 0); /* AS/400 example */

PDF_findfont(p, "Helvetica", "IBM-273", 0); /* S/390 example */

Due to limitations in Acrobat only code pages with characters from the Adobe Glyph
List (see Section 3.3.9, »Unicode Support«) can be used.

Finding PostScript character names. In order to write a custom encoding file or find
fonts which can be used with one of the supplied encodings you will have to find infor-
mation about the exact definition of the character set to be defined by the encoding, as
well as the exact glyph names used in the font files. You must also ensure that a chosen
font provides all necessary characters for the encoding. For example, the core fonts sup-
plied with Acrobat 4/5 do not support ISO 8859-2 (Latin 2) nor Windows code page 1250.
If you happen to have the FontLab1 font editor (by the way, a great tool for dealing with
all kinds of font and encoding issues), you may use it to find out about the encodings
supported by a given font (look for »code pages« in the FontLab documentation).2

For the convenience of PDFlib users, the PostScript program print_glyphs.ps in the dis-
tribution fileset can be used to find the names of all characters contained in a PostScript
font. In order to use it, enter the name of the font at the end of the PostScript file and
send it (along with the font) to a PostScript Level 2 or 3 printer, distill it, or view it with a
Level-2-compatible PostScript viewer. The program will print all characters in the font,
sorted alphabetically by glyph name.

If a font does not contain a character required for a custom encoding, it will be miss-
ing in the PDF document.

3.3.4 The Euro Character
The symbol denoting the European currency Euro raises a number of issues when it
comes to properly displaying and printing it. In this section we’d like to list some hints
so that you can successfully deal with the Euro character.

First of all you’ll have to choose an encoding which includes the Euro character and
check on which position the Euro is located. Some examples:
> In winansi encoding the location is 0x80 (hexadecimal) or 128 (decimal).
> The macroman and iso8859-1 encodings do not contain the Euro character.
> However, the iso8859-15 encoding is an extension of iso8859-1 which adds the Euro

character at 0xA4 (hexadecimal) or 164 (decimal).

Next, you must choose a font which contains the Euro glyph. Many modern fonts in-
clude the Euro glyph, but not all do. Again, some examples:

1. See http://www.fontlab.com
2. Information about the glyph names used in PostScript fonts can be found at http://partners.adobe.com/asn/developer/
typeforum/unicodegn.html (although font vendors are not required to follow these glyph naming recommendations).

http://www.fontlab.com
http://partners.adobe.com/asn/developer/typeforum/unicodegn.html
http://partners.adobe.com/asn/developer/typeforum/unicodegn.html

52 Chapter 3: PDFlib and PDI Programming

> Acrobat’s core fonts contain the Euro character only in Acrobat 4.05 and above, but
not any older versions.

> The built-in fonts in PostScript Level 1 and Level 2 devices do not contain the Euro
character, while those in PostScript 3 devices usually do.

> If a font does not contain the Euro character you can use the Euro from the Symbol
font instead, which is located at position 0xA0 (hexadecimal) or 160 (decimal). It is
available in the version of the Symbol font in Acrobat version 4.0 and above, and the
one built into PostScript 3 devices.

If you choose to not embed the font Acrobat will display the text with one of its substi-
tution fonts. However, these contain the Euro character only in Acrobat 4.0 and above,
but not any older versions. This may result in viewing and printing discrepancies.

3.3.5 Hypertext Encoding
PDF supports two methods for encoding hypertext elements such as bookmarks, anno-
tations, and document information fields. Up to Acrobat 3, all hypertext strings had to
be encoded with a special 8-bit encoding called PDFDocEncoding (PDFDocEncoding can
not be used for text used on page descriptions). Starting with Acrobat 4, Unicode strings
can be used for all hypertext elements. For more information on Unicode see Section
3.3.9, »Unicode Support«.

 000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017

 020 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037

 040 041 042 043 044 045 046 047 050 051 052 053 054 055 056 057

060 061 062 063 064 065 066 067 070 071 072 073 074 075 076 077

100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117

 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137

 140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157

160 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177

200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217

 220 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237

 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257

260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277

300 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317

 320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337

 340 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357

360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1 H I J K L M N O

2 ! " # $ % & � () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 � a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~

8 � � � � � � 	
 � � � � � � �

9 � � � � � � � � � � � � � � �

A '` � � � � � � � � � � � � �

B � � � � � � � � � � � � � � � �

C � � � � ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª «

D ¬ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º »

E ¼ ½ ¾ ¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë

F Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Fig. 3.1. The PDFDocEncoding character set as defined in PDF 1.3 with hexadecimal and
octal codes. This encoding can not be used for page descriptions!

3.3 Text Handling 53

PDFDocEncoding (see Figure 3.1) is a superset of ISO 8859-1 (Latin 1) and therefore
contains all ASCII characters in the lower part. Although PDFDocEncoding and the Win-
dows code page 1252 are quite similar, they differ substantially in the character range
128-160 (0x80–0xA0).

Many clients will be able to directly use PDFDocEncoding. However, since the Mac
encoding substantially differs from PDFDocEncoding, it is necessary to convert Mac
strings to PDFDocEncoding when it comes to hypertext elements, and non-ASCII special
characters are to be used. Mac special characters must be converted to Unicode before
they can be used in hypertext elements. This conversion must be performed by the
client.

Note Hypertext strings will automatically be converted to PDFDocEncoding on EBCDIC systems.

3.3.6 PostScript, TrueType, and OpenType Fonts

Font embedding in PDF. PDF supports fonts outside the set of 14 core fonts in several
ways. PDFlib is capable of embedding font descriptions into the generated PDF output.
Alternatively, a font descriptor consisting of the character metrics and some general in-
formation about the font (without the actual character outline data) can be embedded.
If a font is not embedded in a PDF document, Acrobat will take it from the target system
if available, or construct a substitute font according to the font descriptor in the PDF.
Table 3.7 lists different situations with respect to font usage, each of which poses differ-
ent requirements on the necessary font and metrics files.

When a font with font-specific encoding (a symbol font) is used, but not embedded
in the PDF output, the resulting PDF will be unusable unless the font in question is al-
ready natively installed on the target system (since Acrobat can only simulate Latin text
fonts). Such PDF files are inherently nonportable, although they may be of use in con-
trolled environments, such as intra-corporate document exchange.

Table 3.7. Different font usage situations and required metrics and outline files

font usage font metrics file required?
 font outline file
required?

One of the 14 core fonts with PDFlib’s host encoding1,2

1. See Section 3.3.1, »The PDF Core Fonts« for a list of core fonts.
2. See Section 3.3.2, »8-Bit Encodings built into PDFlib« for the definition of PDFlib’s host encoding.

no no3

3. PostScript font outlines may be supplied for embedding, but not TrueType font outlines.

One of the 14 core fonts with an encoding other than
PDFlib’s host encoding2

yes (AFM files supplied with
the PDFlib distribution)

no

TrueType or OpenType font installed on the Mac or
Windows system (host fonts)

no no

Non-core PostScript fonts without embedding yes no
Non-core PostScript fonts with embedding yes yes
Additional font/encoding combinations for which the
metrics have been compiled into PDFlib (see below)

no yes, if embedding is
requested

TrueType fonts with or without embedding no yes
OpenType fonts with TrueType (*.ttf) or PS (*.otf) outlines no yes
Standard CID fonts4

4. See Section 3.3.8, »Japanese, Chinese, and Korean Text« for more information on CID fonts.

no no
Non-standard CID fonts (not supported) (not supported)

54 Chapter 3: PDFlib and PDI Programming

OpenType fonts. OpenType is a new font format which combines PostScript and True-
Type technology, and uses a platform-independent file format. OpenType is natively
supported on Windows 2000, Windows XP, and Mac OS X. There are two flavors of
OpenType fonts:
> OpenType fonts with TrueType outlines (*.ttf) look and feel like usual TrueType

fonts.
> OpenType fonts with PostScript outlines (*.otf) contain PostScript data in a True-

Type-like file format. This flavor is also called CFF.
PDFlib supports both flavors of OpenType fonts. The configuration details in the sec-
tions below for PostScript and TrueType fonts apply to OpenType fonts, too.

PostScript Type 1 fonts. PDFlib supports the following formats for PostScript Type 1
metrics and outline data on all platforms:
> The platform-independent AFM (Adobe Font Metrics) and the Windows-specific PFM

(Printer Font Metrics) format for metrics information. Since PFM files do not describe
the full character metrics but only the glyphs used in Windows (code page 1252), they
can only be used for the winansi or builtin encodings, while AFM-based font metrics
can be rearranged to any encoding supported by the font.

> The platform-independent PFA (Printer Font ASCII) and the Windows-specific PFB
(Printer Font Binary) format for font outline information in the PostScript Type 1 for-
mat, (sometimes also called »ATM fonts«). PostScript Type 3 fonts are not supported.

> On the Mac, resource-based PostScript Type 1 fonts, sometimes called LWFN (Laser-
Writer Font) fonts, are also supported.

> OpenType fonts with PostScript outlines (*.otf).

If you can get hold of a PostScript font file, but not the corresponding metrics file, you
can try to generate the missing metrics using one of several freely available utilities. For
example, the T1lib package1 contains the type1afm utility for generating AFM metrics
from PFA or PFB font files.

PostScript font names. It is important to use the exact (case-sensitive) PostScript font
name whenever a font is referenced in PDFlib. There are several possibilities to find a
PostScript font’s exact name:
> Open the font outline file (*.pfa or *.pfb), and look for the string after the entry

/FontName. Omit the leading / character from this entry, and use the remainder as
the font name.

> If you have ATM (Adobe Type Manager) installed, you can double-click the font (*.pfb)
or metrics (*.pfm) file, and will see a font sample along with the PostScript name of
the font.

> Open the AFM metrics file and look for the string after the entry FontName.

Note The PostScript font name may differ substantially from the Windows font menu name, e.g.
»AvantGarde-Demi« (PostScript name) vs. »AvantGarde, Bold« (Windows font menu name).
Also, the font name as given in any Windows .inf file is not relevant for use with PDF.

Performance notes for PostScript fonts. It is important to be aware of the impact of
font handling issues on PDFlib’s performance. Generally, the font metrics (either in-
core or on file) are accessed whenever a certain font/encoding combination is used for

1. See http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/rmz/t1lib/t1lib.html

http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/rmz/t1lib/t1lib.html

3.3 Text Handling 55

the first time. Subsequent requests for the same combination will be satisfied from
PDFlib’s internal font cache without any further performance penalty. Regarding font
handling performance, the following observations may be useful:
> Due to their small size and binary nature, PFM metrics files can be read much faster

than the text-based AFM metrics files. However, they cannot be used for arbitrary
encodings.

> AFM files contain much useful information about many aspects of font usage, and
can be used for arbitrary encodings. However, although only the bare character met-
rics are required for PDFlib, the complete AFM file must be parsed in a time-consum-
ing manner.

TrueType and OpenType fonts. PDFlib supports TrueType and OpenType fonts on all
platforms. The TrueType font file must be supplied in Windows TTF format. Alterna-
tively, they can also be installed in the system on Mac and Windows. Contrary to Post-
Script Type 1 fonts, TrueType and OpenType fonts do not require any additional metrics
file since the metrics information can be extracted from the font file itself. PDFlib cur-
rently supports the following flavors of TrueType fonts:
> Unicode-compatible TrueType fonts (cmap table with platform id 3, encoding id 1).

Most modern TrueType fonts for Windows will classify, and can be used with PDFlib
encoding winansi. Other Unicode-compatible fonts can be used with any PDFlib en-
coding as long as the font actually contains the characters required by that encoding.
You can check which code pages are supported by a particular font with the »font
properties extension« mentioned below.

> Symbol fonts with a custom character set (cmap table with platform id 3, encoding id
0). These must be used with PDFlib encoding builtin.

> Mac TrueType fonts and most TrueType fonts for Windows can also be used with
PDFlib encoding macroman since they contain the necessary Mac information (cmap
table with platform id 1, encoding id 0).

The above distinction between text and symbol fonts may seem obvious, but in practise
it may be hard to find the appropriate category for a given font. For various reasons,
text fonts may be coded as TrueType symbol fonts, and vice versa. In case of an encoding
mismatch PDFlib tries to help, and supplies encoding suggestions in the message which
is part of a PDFlib exception.

Note PDFlib does not support TrueType collections (*.ttc).

Host fonts. In addition to accessing font files which have been configured via PDFlib’s
resource and parameter machinery (see Section 3.3.7, »Resource Configuration and the
UPR Resource File«) TrueType and OpenType fonts can also be fetched directly from the
operating system. We refer to such fonts as host fonts. Instead of fiddling with font and
configuration files simply install the font in the operating system (read: drop it into the
fonts directory), and PDFlib will happily use it. Host fonts will not be used for embed-
ding one of the core fonts, and is available on Mac and Windows systems:
> Host font support on Windows is available for TrueType and OpenType fonts (TT and

PS flavors).
> Host font support on Mac OS 9 and Mac OS X is available for TrueType font suitcases,

flat Windows-style TrueType fonts, data-fork TrueType fonts (.dfont), and OpenType
fonts (TT and PS flavors). Older Mac fonts will only work with macroman encoding,
while newer fonts often support additional encodings.

56 Chapter 3: PDFlib and PDI Programming

TrueType font names. It is important to specify the exact (case-sensitive) TrueType
font name whenever a font is referenced in PDFlib. This must be the name of the font as
it is exposed at the user interface. You can easily find this name by double-clicking the
TrueType font file in Windows, and taking note of the full font name which will be dis-
played in the first line of the resulting window (without the TrueType or OpenType term
in parentheses, of course). Do not use the entry in the second line after the label Typeface
name! Also, some fonts may have parts of their name localized according to the respec-
tive Windows version in use. For example, the common font name portion Bold may ap-
pear as the translated word Fett on a German system. In order to retrieve the font data
from the Windows system (host fonts) you must use the translated form of the font
name in PDFlib. However, in order to retrieve the font data directly from file you must
use the generic (non-localized) form of the font name.

In the generated PDF the name of a TrueType font may differ from the name used in
PDFlib (or Windows). This is normal, and results from the fact that PDF uses the Post-
Script name of a TrueType font, which differs from its genuine TrueType name (e.g.,
TimesNewRomanPSMT vs. Times New Roman).

If you want to examine TrueType fonts in more detail take a look at Microsoft’s free
»font properties extension«1 which will display many entries of the font’s TrueType ta-
bles in human-readable form.

Note Contrary to PostScript fonts, TrueType and OpenType font names may contain blank characters.

Legal aspects of font embedding. It’s important to note that mere possession of a font
file may not justify embedding the font in PDF, even for holders of a legal font license.
Many font vendors restrict embedding of their fonts. Some type foundries completely
forbid PDF font embedding, others offer special online or embedding licenses for their
fonts, while still others allow font embedding provided the fonts are subsetted. Please
check the legal implications of font embedding before attempting to embed fonts with
PDFlib. PDFlib will honor embedding restrictions which may be specified in a TrueType
font. If the embedding flag in a TrueType font is set to no embedding2, PDFlib will honor
the font vendor’s request, and reject any attempt at embedding the font.

3.3.7 Resource Configuration and the UPR Resource File
In order to make PDFlib’s font and encoding handling platform-independent and cus-
tomizable, a configuration file can be supplied for describing the available fonts along
with the names of their outline and metrics files, and the names of additional encoding
files. In addition to the static configuration file, dynamic configuration can be accom-
plished at runtime by adding resources with PDF_set_parameter(). For the configuration
file we dug out a simple text format called Unix PostScript Resource (UPR) which came to
life in the era of Display PostScript and is still in use on several systems. However, we
will take the liberty of extending the original UPR format for our purposes. The UPR file
format as used by PDFlib will be described below.3 There is a utility called makepsres (of-
ten distributed as part of the X Window System) which can be used to automatically
generate UPR files from PostScript font outline and metrics files.

1. See http://www.microsoft.com/typography/property/property.htm
2. More specifically: if the fsType flag in the OS/2 table of the font has a value of 2.
3. The complete specification can be found in the book »Programming the Display PostScript System with X« (Appendix A),
available at http://partners.adobe.com/asn/developer/PDFS/TN/DPS.refmanuals.TK.pdf

http://www.microsoft.com/typography/property/property.htm
http://partners.adobe.com/asn/developer/PDFS/TN/DPS.refmanuals.TK.pdf

3.3 Text Handling 57

Note As an alternative to configuring fonts in UPR files or via PDF_set_parameter() you can make
use of PDFlib host font feature in certain situations (see Section 3.3.6, »PostScript, TrueType, and
OpenType Fonts«)

The UPR file format. UPR files are text files with a very simple structure that can easily
be written in a text editor or generated automatically. To start with, let’s take a look at
some syntactical issues:
> Lines can have a maximum of 255 characters.
> A backslash ’\’ escapes any character, including newline characters. This may be used

to extend lines. Windows directory names must be separated by double backslashes
’\\’ or a single forward slash ’/’.

> The period character ’ . ’ serves as a section terminator, and must therefore be es-
caped when used at the start of any other line.

> All entries are case-sensitive.
> Comment lines may be introduced with a percent ’%’ character, and terminated by

the end of the line.
> Whitespace is ignored everywhere.

UPR files consist of the following components:
> A magic line for identifying the file. It has the following form:

PS-Resources-1.0

> A section listing all types of resource categories described in the file. Each line de-
scribes one resource category. The list is terminated by a line with a single period
character. Available resource categories are described below. This section exists for
compatibility only, and is ignored by PDFlib.

> The optional directory line may be used as a shortcut for a path prefix common to all
resource files described in the file. The prefix will be added to all file names given in
the UPR file. If present, the directory line starts with a slash character, immediately
followed by the directory prefix. Note that the initial slash character is required on
all platforms, and is not part of the path name. Using the directory prefix a UPR file
may, for example, point to some central PostScript font directory somewhere in the
file system.

> A section for each of the resource categories listed at the beginning of the file. Each
section starts with a line showing the resource category, followed by an arbitrary
number of lines describing available resources. The list is terminated by a line with a
single period character. Each resource data line contains the name of the resource
(equal signs have to be quoted), an equal sign, and the corresponding relative or ab-
solute file name f0r the resource. Relative file names will have the directory prefix
applied, if one is present in the file. Using a double equal sign forces the file name to
be interpreted absolute, i.e., the prefix is not used.

Supported resource categories. The resource categories supported by PDFlib are listed
in Table 3.8. Other resource categories may be present in the UPR file for compatibility
with Display PostScript installations, but they will silently be ignored.
Redundant resource entries should be avoided. For example, do not include multiple
entries for a certain font’s metrics data. Also, the font name as configured in the UPR file
should exactly match the actual font name in order to avoid confusion (although
PDFlib does not enforce this restriction).

58 Chapter 3: PDFlib and PDI Programming

In Mac OS Classic the colon character ’:’ must be used as a directory separator. The
font names of resource-based PostScript Type 1 fonts (LWFN fonts) must be specified us-
ing the full path include volume name, for example:

Foo-Italic=Classic:Data:Fonts:FooIta

Sample UPR file. The following listing gives an example of a UPR configuration file as
used by PDFlib. It describes the 14 PDF core fonts’ metrics, plus metrics and outline files
for some additional fonts, plus a custom encoding:

PS-Resources-1.0
FontAFM
FontPFM
FontOutline
Encoding
.
% Directory prefix example for Windows: /c:/psfonts
//usr/local/lib/fonts

FontAFM
Code-128=Code_128.afm
Courier=Courier.afm
Courier-Bold=Courier-Bold.afm
Courier-BoldOblique=Courier-BoldOblique.afm
Courier-Oblique=Courier-Oblique.afm
Helvetica=Helvetica.afm
Helvetica-Bold=Helvetica-Bold.afm
Helvetica-BoldOblique=Helvetica-BoldOblique.afm
Helvetica-Oblique=Helvetica-Oblique.afm
Symbol=Symbol.afm
Times-Bold=Times-Bold.afm
Times-BoldItalic=Times-BoldItalic.afm
Times-Italic=Times-Italic.afm
Times-Roman=Times-Roman.afm
ZapfDingbats=ZapfDingbats.afm
.
FontPFM
Foobar-Bold=foobb___.pfm
% Example for an absolute path name with the prefix not applied (two equal signs)
Mistral==c:/psfonts/pfm/mist____.pfm
.
FontOutline
Code-128=Code_128.pfa
ArialMT=Arial.ttf
.
Encoding
iso8859-2=iso8859-2.enc

Table 3.8. Resource categories supported in PDFlib

resource category name explanation
FontAFM PostScript font metrics file in AFM format
FontPFM PostScript font metrics file in PFM format
FontOutline PostScript, TrueType or OpenType font outline file
Encoding text file containing an 8-bit encoding or code page table

3.3 Text Handling 59

cp1250=cp1250.cpg
.

Searching for the UPR resource file. If only the built-in resources are to be used (PDF
core fonts with host encoding), a UPR configuration file is not required, since PDFlib
contains all necessary resources.

If other resources are to be used, PDFlib will search several places for a resource file.
The process is configurable and consists of the following steps:
> On Unix and Windows systems, the environment variable PDFLIBRESOURCE is exam-

ined and used as a resource file name.
> If no file name is found, the client-settable resourcefile parameter is examined and

used as a resource file name, if set. This parameter can be set at runtime:

PDF_set_parameter(p, "resourcefile", "/usr/local/fonts/pdflib.upr");

> If no file name is found, the file pdflib.upr in the current directory is used.
> If this file can’t be opened, an IOError is raised.
> If a resource file can be opened during any of the above steps, but a required resource

category cannot be found, a SystemError is raised.

Note Don’t forget to set the prefix entry in the upr file accordingly. The path to the upr file is not au-
tomatically prepended to the resource file names listed in the upr file. To prevent the prefix
from being applied to a particular resource entry use double equal signs as described above.

Setting resources without a UPR file. In addition to using a UPR file for the configura-
tion, it is also possible to directly configure individual resources within the source code
via the PDF_set_parameter() function. This function takes a category name and a corre-
sponding resource entry as it would appear in the respective section of this category in
a UPR resource file, for example:

PDF_set_parameter(p, "FontAFM", "Foobar-Bold=foobb___.afm")
PDF_set_parameter(p, "FontOutline", "Foobar-Bold=foobb___.pfa")

Similar to UPR files, if two equal signs are present, the file name will be interpreted ab-
solute. If only a single equal sign is present, the directory prefix will be used if one has
been configured.

3.3.8 Japanese, Chinese, and Korean Text

CJK support in Acrobat and PDF1. While Japanese font support was already available
in Acrobat 3J, Acrobat 4 added full support for CID (Character ID) fonts for Japanese, Chi-
nese, and Korean (CJK) text even in the non-Japanese versions of the full Acrobat pack-
age as well as the free Acrobat Reader. In order to use CJK documents in Acrobat you
must do one of the following:
> Use a localized CJK version of Acrobat.
> If you use any non-CJK version of the full Acrobat product, select the Acrobat install-

er’s option »Asian Language Support« (Windows) or »Language Kit« (Mac). The re-
quired support files (fonts and encodings) will be installed from the Acrobat product
CD-ROM.

1. This is a good opportunity to praise Ken Lunde’s seminal tome »CJKV information processing – Chinese, Japanese, Korean
& Vietnamese Computing« (O’Reilly 1999, ISBN 1-56592-224-7), as well as his work at Adobe since he’s one of the driving
forces behind CJK support in PostScript and PDF.

60 Chapter 3: PDFlib and PDI Programming

> If you use Acrobat Reader, install one of the Asian Font Packs which are available on
the Acrobat product CD-ROM, or on the Web.1

CJK encodings and fonts. Historically, a wide variety of CJK encoding schemes has
been developed by diverse standards bodies, companies, and other organizations. For-
tunately enough, all prevalent encodings are supported by Acrobat and PDF by default.
Acrobat 4 supports a wealth of different encoding schemes for CJK fonts. Since the con-
cept of an encoding is much more complicated for CJK text than for Latin text, simple
encoding vectors with 256 entries no longer suffice. Instead, PostScript and PDF use the
concept of character collections and character maps (CMaps) for organizing the charac-
ters in a font. Conceptually, CMaps can be thought of as large encodings for CJK fonts.

Acrobat supports a set of standard fonts for CJK text. These fonts are supplied with
the Acrobat installation (or the Asian FontPack), and therefore don’t have to be embed-
ded in the PDF file (this parallels the use of the 14 core fonts for Latin text). These fonts
contain all characters required for common encodings, and support both horizontal
and vertical writing modes. The standard fonts and CMaps are documented in Table 3.9.
The Acrobat 4 fonts can also be used with Acrobat 5, but the corresponding Acrobat 5
fonts will be used for display and print if a required font is not installed on the system.

As can be seen from the table, the default CMaps support most CJK encodings used
on Mac, Windows, and Unix systems, as well as several other vendor-specific encodings.
In particular, the major Japanese encoding schemes Shift-JIS, EUC, ISO 2022, and Uni-
code (UCS-2) are supported. Tables with all supported characters are available from
Adobe2; CMap descriptions can be found in Table 3.10.

1. See http://www.adobe.com/products/acrobat/acrrasianfontpack.html

Table 3.9. Acrobat’s standard fonts and CMaps (encodings) for Japanese, Chinese, and Korean text

locale font name sample supported CMaps (encodings)
Simplified
Chinese

STSong-Light1

STSongStd-Light-Acro2

1. Available in Acrobat 4; Acrobat 5 will substitute these with different fonts.
2. Available in Acrobat 5 only.

GB-EUC-H, GB-EUC-V, GBpc-EUC-H, GBpc-EUC-V,
GBK-EUC-H, GBK-EUC-V, GBKp-EUC-H, GBKp-EUC-V,
GBK2K-H, GBK2K-V, UniGB-UCS2-H, UniGB-UCS2-V

Traditional
Chinese

MHei-Medium1

MSung-Light1

MSungStd-Light-Acro2

B5pc-H, B5pc-V, HKscs-B5-H, HKscs-B5-V, ETen-B5-H,
ETen-B5-V, ETenms-B5-H, ETenms-B5-V, CNS-EUC-H,
CNS-EUC-V, UniCNS-UCS2-H, UniCNS-UCS2-V

Japanese HeiseiKakuGo-W51

HeiseiMin-W31

KozMinPro-Regular-Acro2

83pv-RKSJ-H, 90ms-RKSJ-H, 90ms-RKSJ-V, 90msp-
RKSJ-H, 90msp-RKSJ-V, 90pv-RKSJ-H, Add-RKSJ-H,
Add-RKSJ-V, EUC-H, EUC-V, Ext-RKSJ-H, Ext-RKSJ-V,
H, V, UniJIS-UCS2-H, UniJIS-UCS2-V, UniJIS-UCS2-
HW-H, UniJIS-UCS2-HW-V

Korean HYGoThic-Medium1

HYSMyeongJo-Medium1

HYSMyeongJoStd-Medium-
Acro2

KSC-EUC-H, KSC-EUC-V, KSCms-UHC-H, KSCms-
UHC-V, KSCms-UHC-HW-H, KSCms-UHC-HW-V,
KSCpc-EUC-H, UniKS-UCS2-H, UniKS-UCS2-V

2. See http://partners.adobe.com/asn/developer/typeforum/cidfonts.html for a wealth of resources related to CID fonts,
including tables with all supported glyphs (search for »character collection«).

http://www.adobe.com/products/acrobat/acrrasianfontpack.html
http://partners.adobe.com/asn/developer/typeforum/cidfonts.html

3.3 Text Handling 61

CJK font support in PDFlib. Having realized the similarity between core fonts/encod-
ing vector on the one hand, and CJK standard fonts/CMaps on the other hand, it won’t
be much of a surprise that both Latin and CJK fonts can be selected with the same PDFlib
interface, using the CMap name in lieu of the encoding name, and taking into account
that a given CJK font supports only a certain set of CMaps (see Table 3.9). The KozMinPro-
Regular-Acro sample in Table 3.9 has been generated with the following code:

font = PDF_findfont(p, "KozMinPro-Regular-Acro", "Ext-RKSJ-H", 0);
PDF_setfont(p, font, 24);
PDF_set_text_pos(p, x, y);
PDF_show(p, "\x93\xFA\x96\x7B\x8C\xEA");

These instructions locate one of the Japanese standard fonts, choosing a Shift-JIS-com-
patible CMap (Ext-RKSJ) encoding and horizontal writing mode (H). The fontname para-
meter must be the exact name of the font (strictly speaking, the value of the /CIDFont-
Name entry in the corresponding CID PostScript font file), without any encoding or
writing mode suffixes. The encoding parameter is the name of one of the supported
CMaps (the choice depends on the font) and will also indicate the writing mode (see be-
low). PDFlib supports all of Acrobat’s default CMaps, and will complain when it detects a
mismatch between the requested font and the CMap. For example, asking PDFlib to use
a Korean font with a Japanese encoding will result in an exception of type PDF_
ValueError.

Although CID font embedding is technically possible in PDF 1.3, it is not practical due
to the size of typical CID fonts, and due to the fact that most CJK font licenses do not
permit embedding. For this reason the embed parameter is not used for CID fonts, and
must be 0.

PDFlib doesn’t require any font-specific metrics information for CID fonts, and
doesn’t make any attempt to decode the client-supplied text strings, or verify whether
they are correctly encoded with respect to the underlying CMap. For this reason the fol-
lowing features are currently not supported for CID fonts:
> calculating the extent of text with PDF_stringwidth()
> box formatting with PDF_show_boxed()
> activating underline/overline/strikeout mode
> retrieving the textx/texty position

Note PDFlib currently only supports the standard CID fonts supplied with Acrobat (see Table 3.9).
Neither custom CID fonts nor Japanese, Chinese, or Korean TrueType fonts can be used. How-
ever, you can simulate bold fonts by rendering »filled and stroked« text (rendering mode 2, see
textrendering parameter).

CJK character widths. All characters in CJK fonts are considered to have the same
width, including Latin characters. The character width is equal to the font size. PDFlib
currently doesn’t support half-width/full-width semantics for CJK fonts. If you want
Latin characters which have a smaller width than the CJK characters you must switch to
a Latin 8-bit font such as Courier or Helvetica.

Horizontal and vertical writing mode. PDFlib supports both horizontal and vertical
writing modes. The mode is selected along with the encoding by choosing the appropri-
ate CMap name. CMaps with names ending in -H select horizontal writing mode, while
the -V suffix selects vertical writing mode.

62 Chapter 3: PDFlib and PDI Programming

Table 3.10. Predefined CMaps for Japanese, Chinese, and Korean text (from the PDF Reference)

locale supported CMaps description
Simplified
Chinese

GB-EUC-H
GB-EUC-V

Microsoft Code Page 936 (lfCharSet 0x86), GB 2312-80 character set, EUC-
CN encoding

GBpc-EUC-H
GBpc-EUC-V1

Macintosh, GB 2312-80 character set, EUC-CN encoding, Script Manager
code 2

GBK-EUC-H1

GBK-EUC-V1
Microsoft Code Page 936 (lfCharSet 0x86), GBK character set, GBK
encoding

GBKp-EUC-H2

GBKp-EUC-V2
Same as GBK-EUC-H, but replaces half-width Latin characters with
proportional forms and maps character code 0x24 to a dollar sign ($)
instead of a yuan symbol (¥).

GBK2K-H2

GBK2K-V2
GB 18030-2000 character set, mixed 1-, 2-, and 4-byte encoding

UniGB-UCS2-H1

UniGB-UCS2-V1
Unicode (UCS-2) encoding for the Adobe-GB1 character collection

Traditional
Chinese

B5pc-H
B5pc-V

Macintosh, Big Five character set, Big Five encoding, Script Manager code 2

HKscs-B5-H2

HKscs-B5-V2
Hong Kong SCS (Supplementary Character Set), an extension to the Big
Five character set and encoding

ETen-B5-H
ETen-B5-V

Microsoft Code Page 950 (lfCharSet 0x88), Big Five character set with ETen
extensions

ETenms-B5-H1

ETenms-B5-V1
Same as ETen-B5-H, but replaces half-width Latin characters with
proportional forms

CNS-EUC-H
CNS-EUC-V

CNS 11643-1992 character set, EUC-TW encoding

UniCNS-UCS2-H1

UniCNS-UCS2-V1
Unicode (UCS-2) encoding for the Adobe-CNS1 character collection

Japanese 83pv-RKSJ-H Macintosh, JIS X 0208 character set with KanjiTalk6 extensions, Shift-JIS
encoding, Script Manager code 1

90ms-RKSJ-H
90ms-RKSJ-V

Microsoft Code Page 932 (lfCharSet 0x80), JIS X 0208 character set with
NEC and IBM extensions

90msp-RKSJ-H1

90msp-RKSJ-V1
Same as 90ms-RKSJ-H, but replaces half-width Latin characters with
proportional forms

90pv-RKSJ-H Macintosh, JIS X 0208 character set with KanjiTalk7 extensions, Shift-JIS
encoding, Script Manager code 1

Add-RKSJ-H
Add-RKSJ-V

JIS X 0208 character set with Fujitsu FMR extensions, Shift-JIS encoding

EUC-H1

EUC-V1
JIS X 0208 character set, EUC-JP encoding

Ext-RKSJ-H
Ext-RKSJ-V

JIS C 6226 (JIS78) character set with NEC extensions, Shift-JIS encoding

H
V

JIS X 0208 character set, ISO-2022-JP encoding

UniJIS-UCS2-H1

UniJIS-UCS2-V1
Unicode (UCS-2) encoding for the Adobe-Japan1 character collection

UniJIS-UCS2-HW-H1

UniJIS-UCS2-HW-V1
Same as UniJIS-UCS2-H, but replaces proportional Latin characters with
half-width forms

Korean KSC-EUC-H
KSC-EUC-V

KS X 1001:1992 character set, EUC-KR encoding

KSCms-UHC-H
KSCms-UHC-V

Microsoft Code Page 949 (lfCharSet 0x81), KS X 1001:1992 character set
plus 8822 additional hangul, Unified Hangul Code (UHC) encoding

3.3 Text Handling 63

Note Some PDFlib functions change their semantics according to the writing mode. For example,
PDF_continue_text() should not be used in vertical writing mode, and the character spacing
must be negative in order to spread characters apart in vertical writing mode. The details are
discussed in the respective function descriptions.

CJK text encoding in PDFlib. The client is responsible for supplying text such that its
encoding matches the encoding requested for the CID font. PDFlib does not check
whether the supplied text conforms to the requested encoding.Since several of the sup-
ported encodings may contain null characters in the text strings, C and C++ developers
must take care not to use the PDF_show() etc. functions, but instead PDF_show2() etc.
which allow for arbitrary binary strings along with a length parameter. For all other
bindings, the text functions support binary strings, and PDF_show2() etc. are not re-
quired. For multi-byte encodings, the high-order byte of a character must appear first.

PDFlib language bindings which are natively Unicode-aware automatically convert
Unicode strings supplied to the library. For this reason only Unicode-compatible CMaps
should be used with these language bindings when the nativeunicode parameter is set to
true (see also Section 3.3.9, »Unicode Support«).

Printing PDF documents with CJK text. Printing CJK documents gives rise to a number
of issues which are outside the scope of this manual. However, we will supply some use-
ful hints for the convenience of PDFlib users. If you have trouble printing CJK docu-
ments with Acrobat, consider one or more of the following:
> Printing CID fonts does not work on all PostScript printers. Native CID font support

has only been integrated in PostScript version 2015, i.e. PostScript Level 1 and early
Level 2 printers do not natively support CID fonts (unless the printer is equipped
with the Type 0 font extensions). However, for early Level 2 devices the printer driver
is supposed to take care of this by downloading an appropriate set of compatibility
routines to pre-2015 Level 2 printers.

> Due to the large number of characters CID fonts consume very much printer memo-
ry (disk files for CID fonts typically are 5–10 MB in size). Not all printers have enough
memory for printing such fonts. For example, in our testing we found that we had to
upgrade a Level 3 laser printer from 16 MB to 48 MB RAM in order to reliably print
PDF documents with CID fonts.

> Non-Japanese PostScript printers do not have any Japanese fonts installed. For this
reason, you must check Download Asian Fonts in Acrobat’s print dialog.

> If you can’t successfully print using downloaded fonts, check Print as Image in Acro-
bat’s print dialog. This instructs Acrobat to send a bitmapped version of the page to
the printer (300 dpi, though).

KSCms-UHC-HW-H1

KSCms-UHC-HW-V1
Same as KSCms-UHC-H, but replaces proportional Latin characters with
half-width forms

KSCpc-EUC-H Macintosh, KS X 1001:1992 character set with Mac OS KH extensions, Script
Manager Code 3

UniKS-UCS2-H1

UniKS-UCS2-V1
Unicode (UCS-2) encoding for the Adobe-Korea1 character collection

1. Only available for PDF 1.3 / Acrobat 4 and above
2. Only available for PDF 1.4 / Acrobat 5 and above

Table 3.10. Predefined CMaps for Japanese, Chinese, and Korean text (from the PDF Reference)

locale supported CMaps description

64 Chapter 3: PDFlib and PDI Programming

3.3.9 Unicode Support
Starting with version 4, Acrobat supports the Unicode standard,
almost identical to ISO 106461. This is a large character set which
covers all current and many ancient languages and scripts in
the world, and has significant support in many applications and
operating systems. PDFlib supports the Unicode standard for
the following features:
> bookmarks (see Figure 3.2)
> contents and title of note annotations (see Figure 3.2)
> standard and user-defined document information field contents (but not user-

defined field names – the PDF specification unfortunately doesn’t allow this)
> description and author of file attachments
> CJK text on page descriptions, provided a Unicode-compatible encoding is used (see

Section 3.3.8, »Japanese, Chinese, and Korean Text«)
> 8-bit code pages for TrueType, PostScript, and OpenType fonts

Before delving into the Unicode implementation, however, you should be aware of the
following restrictions regarding Unicode support in Acrobat:
> Acrobat 4 does not display all characters from the Adobe Glyph List correctly (this

has been fixed in Acrobat 5). This bug affects, for example, Cyrillic characters.
> The usability of Unicode-enhanced PDF documents heavily depends on the Unicode

support available on the target system. Unfortunately, most systems today are far
from being fully Unicode-enabled in their default configurations. Although Win-
dows NT/2000/XP and Mac OS support Unicode internally, availability of appropri-
ate Unicode fonts is still an issue.

> Acrobat on Windows is unable to handle more than one script in a single annotation.
This seems to be related to an OS-specific issue (restrictions of the text edit widget
used in Acrobat’s implementation of the annotation feature).

Unicode code pages for PostScript and TrueType fonts. PDFlib supports Unicode for
page descriptions for characters within the Adobe Glyph List (AGL). While text strings
still must contain 8-bit characters, an arbitrary set of up to 256 characters can be select-
ed using a Unicode-based code page definition file. This kind of Unicode support is
available for Unicode-based TrueType fonts and PostScript with glyph names in the
AGL. For details on code pages and AGL see Section 3.3.3, »Custom Encoding and Code
Page Files for 8-Bit Encodings«.

Unicode encoding for CID fonts. PDF allows Unicode-encoded text on document pages
(as opposed to hypertext as discussed above). Unfortunately, this holds only true for
CID fonts, but not regular Type 1 PostScript fonts. In order to place Unicode-conforming
Chinese, Japanese, or Korean text on a page, a Unicode-compatible CMap must be used.
These are easily identified by the Uni prefix in their name (see Table 3.10). These CMaps,
however, only support the characters required for the respective locale, but not other
Unicode characters.

Unicode text on page descriptions must be supplied »as is«, i.e., it must not be
wrapped with BOM and double-null like hypertext (see below). In addition, clients of the
C and C++ language bindings (except when the ANSI string class is used in the latter

1. See http://www.unicode.org

http://www.unicode.org

3.3 Text Handling 65

case) must take care not to use the standard text functions (PDF_show(), PDF_show_xy(),
and PDF_continue_text()) when the text may contain embedded null characters. In such
cases the alternate functions PDF_show2() etc. must be used. This is not a concern for all
other language bindings since the PDFlib language wrappers internally call PDF_show2()
etc. in the first place.

Unicode encoding for hypertext elements. PDFlib supports a dual-encoding approach
with respect to all text supplied by the client for one of the Unicode-enabled hypertext
functions (bookmarks, annotations, etc.). PDF expects Unicode hypertext according to
the following rules (these are also known as big-endian UTF-16 serialization with signa-
ture):
> In order to distinguish »regular« 8-bit encoded text strings from 16-bit Unicode

strings, the Unicode Byte Order Mark (BOM) is used as a sentinel at the beginning of
the string. The BOM consists of the following two byte values which must be the first
16-bit character in all Unicode strings for hypertext:

hex: FE FF octal: 376 377

> Subsequent characters in the Unicode string are encoded with 2 bytes each, where
the high order byte occurs first in the linear ordering (big-endian byte ordering, un-
like the little-endian ordering used on Windows/Intel systems).

> Since Unicode strings may contain null characters, the usual C convention for
strings cannot be used. For this reason, all non-Unicode-aware PDFlib language bind-
ings (e.g., the C and C++ language bindings) expect Unicode strings to be terminated
with a Unicode null character, i.e., two null bytes.

For example, the following string (in octal notation) encodes the Greek word »Λ ΟΓΟΣ«
(see Figure 3.2):

\376\377\003\233\003\237\003\223\003\237\003\243\0\0

Fig. 3.2. Unicode bookmarks (left) and Unicode text annotations (right)

66 Chapter 3: PDFlib and PDI Programming

or in hexadecimal notation:

\xFE\xFF\x03\x9B\x03\x9F\x03\x93\x03\x9F\x03\xA3\0\0

Clients of non-Unicode-aware language bindings (see below) must manually wrap Uni-
code hypertext with BOM and double-null as described above.

Wrong Unicode character assignments on Windows. The following PDFlib language
bindings are Unicode-aware, and can automatically convert Unicode strings to the for-
mat expected by PDFlib:
> ActiveX/COM
> Java (depending on locale settings)
> Tcl (requires Tcl 8.2 or above)

However, in order to avoid the character conversion problem described below, Unicode
support is disabled by default in these bindings. It can be activated by setting the PDFlib
parameter nativeunicode to true (see also Section 4.3.2, »Text Output«):

p.set_parameter("nativeunicode", "true");

Native Unicode mode means that the wrapper code will internally distinguish the fol-
lowing cases, and apply the appropriate conversion:
> 8-bit strings, i.e., strings which contain only characters from U+0000 to U+00FF are

interpreted as PDFDocEncoding (for hypertext), or 8-bit characters according to the
current encoding (for page descriptions).

> Unicode strings for hypertext functions will be encoded according to the PDF refer-
ence (wrapped with BOM and double-null). Unicode strings must be encoded accord-
ing to UCS-2. UTF-8 encoding is not currently supported.

> Unicode strings for page descriptions will be supplied without any conversion. This
requires a Unicode-compatible CMap to be selected (see Table 3.9).

The developer generally does not need to care about the encoding specifics detailed
above, but can simply use Unicode text as supported by the environment. (More details
on Unicode usage from within the supported languages can be found in the manual sec-
tion for the respective binding in Chapter 2). However, there’s a subtle issue related to
literal Unicode characters embedded in ActiveX, Java, or Tcl source code which we will
try to explain with a small example.

Java’s native support for Unicode strings is just fine for PDF’s hypertext elements,
but can be dangerous with respect to page descriptions and non-Unicode-compliant 8-
bit encodings. For example, while most characters in the Windows code page 1252 are
compatible with Unicode, not all are (more specifically, the range 0x80-0x9F). Consider
the following attempt to show the endash character with PDFlib’s Java binding:

// Literal character 0x96 = Alt-150 in the code. Works only if nativeunicode == false
p.show("–");

When this snippet is compiled under Unix with the Latin-1 character set (which is fully
Unicode-compatible), it will work just fine. However, when it is compiled under Win-
dows with code page 1252 and nativeunicode == true, the literal endash character (0x96 in
code page 1252) will be translated to the corresponding Unicode character (0x2013 in this
example), which is unsuited for an 8-bit PDF encoding such as winansi. In order to pre-
vent this problem in native Unicode mode rewrite the above code snippet as follows:

3.3 Text Handling 67

// Safe way of selecting characters outside Latin-1 if nativeunicode == true
p.show("\u0096");

This will pass the intended character code 0x96 to PDFlib, which will correctly interpret
it according to the chosen encoding vector (although the Java compiler will be fooled
into believing it deals with the Unicode character 0x096, which doesn’t actually exist).

3.3.10 Text Metrics, Text Variations, and Text Box Formatting

Text position. PDFlib maintains the text position independently from the current
point for drawing graphics. While the fromer can be queried via the textx/texty parame-
ters, the latter can be queried via currentx/currenty.

Font and character metrics. PDFlib uses the character and font metrics system used by
PostScript and PDF which shall be briefly discussed here.

The font size which must be specified by PDFlib users is the minimum distance be-
tween adjacent text lines which is required to avoid overlapping character parts. The
font size is generally larger than individual characters in a font, since it spans ascender
and descender, plus possibly additional space between lines.

The leading (line spacing) specifies the vertical distance between the baselines of ad-
jacent lines of text. By default it is set to the value of the font size. The capheight is the
height of capital letters such as T or H in most Latin fonts. The ascender is the height of
lowercase letters such as f or d in most Latin fonts. The descender is the distance from the
baseline to the bottom of lowercase letters such as j or p in most Latin fonts. The de-
scender is usually negative. The values of capheight, ascender, and descender are mea-
sured as a fraction of the font size, and must be multiplied with the required font size
before being used.

The values of capheight, ascender, and descender for a specific font are supplied in
the font metrics file, and can be queried from PDFlib as follows:

float capheight, ascender, descender, fontsize;
...
font = PDF_findfont(p, "Times-Roman", "host", 0);
PDF_setfont(p, font, fontsize);

capheight = PDF_get_value(p, "capheight", font) * fontsize;
ascender = PDF_get_value(p, "ascender", font) * fontsize;
descender = PDF_get_value(p, "descender", font) * fontsize;

���������

	�
���	��

�
���	��

����
���

��
�����

Fig. 3.3. Font and character metrics

68 Chapter 3: PDFlib and PDI Programming

Note The position and size of superscript and subscript cannot be queried from PDFlib since this in-
formation is not contained in AFM metrics files.

CPI calculations. While most fonts have varying character widths, so-called mono-
spaced fonts use the same widths for all characters. In order to relate PDF font metrics to
the characters per inch (CPI) measurements often used in high-speed print environ-
ments, some calculation examples for the mono-spaced Courier font may be helpful. In
Courier, all characters have a width of 600 units with respect to the full character cell of
1000 units per point (this value can be retrieved from the corresponding AFM metrics
file). For example, with 12 point text all characters will have an absolute width of

12 points * 600/1000 = 7.2 points

with an optimal line spacing of 12 points. Since there are 72 points to an inch, exactly 10
characters of Courier 12 point will fit in an inch. In other words, 12 point Courier is a 10
cpi font. For 10 point text, the character width is 6 points, resulting in a 72/6 = 12 cpi
font. Similarly, 8 point Courier results in 15 cpi.

Underline, overline, and strikeout text. PDFlib can be instructed to put lines below,
above, or in the middle of text. The stroke width of the bar and its distance from the
baseline are calculated based on the font’s metrics information. In addition, the current
values of the horizontal scaling factor and the text matrix are taken into account when
calculating the width of the bar. PDF_set_parameter() can be used to switch the under-
line, overline, and strikeout feature on or off as follows:

PDF_set_parameter(p, "underline", "true"); /* enable underlines */

The current stroke color is used for drawing the bars. The current linecap and dash pa-
rameters are ignored, however. Aesthetics alert: in most fonts underlining will touch
descenders, and overlining will touch diacritical marks atop ascenders.

Note The underline, overline, and strikeout features are not supported for CID fonts.

Text rendering modes. PDFlib supports several rendering modes which affect the ap-
pearance of text. This includes outline text and the ability to use text as a clipping path.
Text can also be rendered invisibly which may be useful for placing text on scanned im-
ages in order to make the text accessible to searching and indexing, while at the same
time assuring it will not be visible directly. The rendering modes are described in Table
3.11. They can be set with PDF_set_value().

PDF_set_value(p, "textrendering", 1); /* set stroked text rendering (outline text) */

Table 3.11. Values for the text rendering mode

value explanation value explanation
0 fill text 4 fill text and add it to the clipping path
1 stroke text (outline) 5 stroke text and add it to the clipping path
2 fill and stroke text 6 fill and stroke text and add it to the clipping path
3 invisible text 7 add text to the clipping path

3.3 Text Handling 69

Text color. Text will usually be display in the current fill color, which can be set using
PDF_setcolor(). However, if a rendering mode other than 0 has been selected, both stroke
and fill color may affect the text depending on the selected rendering mode.

Text box formatting. While PDFlib offers the PDF_stringwidth() function for perform-
ing text width calculations, many clients need easy access to text box formatting and
justifying, e.g. to fit a certain amount of text into a given column. Although PDFlib of-
fers such features, you shouldn’t think of PDFlib as a full-featured text and graphics lay-
out engine. The PDF_show_boxed() function is an easy-to-use method for text box for-
matting with a number of formatting options. Text may be laid out in a rectangular box
either left-aligned, right-aligned, centered, or fully justified. The first line of text starts
at a baseline with a vertical position which equals the top edge of the supplied box mi-
nus the leading. The bottom edge of the box serves as the last baseline used. For this rea-
son, descenders of the last text line may appear outside the specified box (see Figure
3.4).

This function justifies by adjusting the inter-word spacing (the last line will be left-
aligned only). Obviously, this requires that the text contains spaces (PDFlib will not in-
sert spaces if the text doesn’t contain any). Advanced text processing features such as
hyphenation are not available – PDFlib simply breaks text lines at existing whitespace
characters. Text is never clipped at the boundaries of the box.

Supplying a feature parameter of blind can be useful to determine whether a string
fits in a given box, without actually producing any output.

ASCII newline characters (ox0A) in the supplied text are recognized, and force a new
paragraph. CR/NL combinations are treated like a single newline character. Other for-
matting characters (especially tab characters) are not supported.

The following is a small example of using PDF_show_boxed(). It uses PDF_rect() to
draw an additional border around the box which may be helpful in debugging:

text = "In an attempt to reproduce sounds more accurately, pinyin spellings often ... ";
fontsize = 13;

font = PDF_findfont(p, "Helvetica", "host", 0);
PDF_setfont(p, font, fontsize);

x = 50;
y = 650;
w = 357;
h = 6 * fontsize;

c = PDF_show_boxed(p, text, x, y, w, h, "justify", "");

In an attempt to reproduce sounds more accurately, pinyin
spellings often differ markedly from the older ones, and
personal names are usually spelled without apostrophes or
hyphens; an apostrophe is sometimes used, however, to
avoid ambiguity when syllables are run together (as in
Chang´an to distinguish it from Chan´gan).

Fig. 3.4. Text box formatting: the bottom edge will serve as the last baseline, not as a clipping border.

70 Chapter 3: PDFlib and PDI Programming

if (c > 0) {
/* Not all characters could be placed in the box; act appropriately here */
...

}
PDF_rect(p, x, y, w, h);
PDF_stroke(p);

The following requirements and restrictions of PDF_show_boxed() shall be noted:
> Contiguous blanks in the text should be avoided.
> Due to restrictions in PDF’s word spacing support, the space character must be avail-

able at code position 0x20 in the encoding. Although this is the case for most com-
mon encodings, it implies that justification will not work with EBCDIC encoding.

> The simplistic formatting algorithm may fail for unsuitable combinations of long
words and narrow columns since there is no hyphenation algorithm.

> Since the bottom part of the box is used as a baseline, descenders in the last line may
extend beyond the box area.

> Using PDF_show_boxed() with top-down coordinates isn’t exactly intuitive. Please re-
view the information in Section 3.2.1, »Coordinate Systems«.

> It’s currently not possible to feed the text in multiple portions into the box format-
ting routine. However, you can retrieve the text position after calling PDF_show_
boxed() with the textx and texty parameters.

> The font within the text box can’t be changed.
> Text box formatting is not supported for CID fonts/CJK encodings.

3.4 Image Handling
3.4.1 Supported Image File Formats

Embedding raster images in the generated PDF is an important feature of PDFlib. PDFlib
currently deals with the image file formats described below. For most formats PDFlib
passes the compressed image data unchanged to the PDF output since PDF internally
supports most compression schemes used in image file formats. This technique (called
pass-through mode in the descriptions below) results in very fast image import, since de-
compressing the image data and subsequent recompression are not necessary. How-
ever, PDFlib cannot check the integrity of the compressed image data in this mode. In-
complete or corrupt image data may result in error or warning messages when using
the PDF document in Acrobat (e.g., »Read less image data than expected«).

If an image file can’t be imported successfully and you need to know more details
about the reason set the imagewarning parameter to true (see Section 4.6, »Image Func-
tions« for more details):

PDF_set_parameter(p, "imagewarning", "true"); /* enable image warnings */

PNG images. PDFlib supports all flavors of PNG images (Portable Network Graphics).1
PNG images are handled in pass-through mode in most cases. PNG images which make
use of interlacing, contain an alpha channel (which will be lost anyway, see below), or
have 16 bit color depth will have to be uncompressed, which takes significantly longer
than pass-through mode. If a PNG image contains transparency information, the trans-

1. See http://www.w3.org/Graphics/PNG and http://www.libpng.org/pub/png

http://www.w3.org/Graphics/PNG
http://www.libpng.org/pub/png

3.4 Image Handling 71

parency is retained in the generated PDF (see Section 3.4.5, »Image Masks and Transpar-
ency«). Alpha channels are not supported by PDFlib.

JPEG images. JPEG images are always handled in pass-through mode. PDFlib supports
the following flavors of JPEG image compression:
> Baseline JPEG compression which accounts for the vast majority of JPEG images.
> Progressive JPEG compression which is supported since Acrobat 4/PDF 1.3. If run in

Acrobat 3 compatibility mode PDFlib will refuse to import progressive JPEGs.

JPEG images can be packaged in several different file formats. PDFlib supports all com-
mon JPEG file formats, and will read resolution information from the following flavors:
> JFIF, which is generated by a wide variety of imaging applications.
> JPEG files written by Adobe Photoshop and other Adobe applications. PDFlib applies

a workaround which is necessary to correctly process Photoshop-generated CMYK
JPEG files.

PDFlib does not interpret resolution information from JPEG images in the SPIFF file for-
mat.

GIF images. GIF images are always handled in pass-through mode (PDFlib does not use
LZW decompression). PDFlib supports the following flavors of GIF images:
> Due to restrictions in the compression schemes supported by the PDF file format,

the entry in the GIF file called »LZW minimum code size« must have a value of 8 bits.
Unfortunately, there is no easy way to determine this value for a certain GIF file. An
image which contains more than 128 distinct color values will always qualify (e.g., a
full 8-bit color palette with 256 entries). Images with a smaller number of distinct
colors may also work, but it is difficult to tell in advance because graphics programs
may use 8 bits or less as LZW minimum code size in this case, and PDFlib may there-
fore reject the image. The following trick which works in Adobe Photoshop and simi-
lar image processing software is known to result in GIF images which are accepted by
PDFlib: load the GIF image, and change the image color mode from »indexed« to
»RGB«. Now change the image color mode back to »indexed«, choosing a color pal-
ette with more than 128 entries, for example the Mac or Windows system palette, or
the Web palette.

> The image must not be interlaced.
> Only the first image of a multi-frame (animated) GIF image will be imported.

For other GIF image flavors conversion to the PNG graphics format is recommended.

Note In a particular test case PDFlib converted a GIF image to a PDF file which displays just fine, but
results in a PostScript error when printed to a PostScript Level 2 or 3 printer. Since the problem
does not occur with Ghostscript, we consider this a bug in the PostScript interpreter. You can
work around the problem by selecting PostScript Level 1 output in Acrobat’s print dialog.

TIFF images. PDFlib will handle most TIFF images in pass-through mode. PDFlib sup-
ports the following flavors of TIFF images:
> compression schemes: uncompressed, CCITT (group 3, group 4, and RLE), ZIP (=Flate),

LZW, and PackBits (=RunLength) are handled in pass-through mode; other compres-
sion schemes are handled by uncompressing.

> color depth: black and white, grayscale, RGB, and CMYK images; any alpha channel
which may be present in the file will be ignored.

72 Chapter 3: PDFlib and PDI Programming

> TIFF files containing more than one image (see Section 3.4.7, »Multi-Page Image
Files«)

> Color depth must be 1, 2, 4, or 8 bits per color sample (this is a requirement of PDF)

Multi-strip TIFF images are converted to multiple images in the PDF file which will visu-
ally exactly represent the original image, but can be individually selected with Acrobat’s
TouchUp object tool. Multi-strip TIFF images can be converted to single-strip images
with the tiffcp command line tool which is part of the TIFFlib package.1 The Image-
Magick2 tool always writes single-strip TIFF images.

Some TIFF features (e.g., CIE color space, JPEG compression) and certain combina-
tions of features (e.g., LZW compression and alpha channel, LZW compression and tiling)
are not supported.

Note Converting certain flavors of CCITT group 3 compressed TIFF images with PDFlib may trigger
the message »Read less image data than expected« in Acrobat 4. Since the problem does not
exist in Ghostscript or Acrobat 5, and the image displays just fine despite the error message, we
consider this a bug in Acrobat 4. You may be able to work around it by choosing a different TIFF
compression scheme.

CCITT images. Raw Group 3 or Group 4 fax compressed image data are always handled
in pass-through mode. Note that this format actually means raw CCITT-compressed im-
age data, not TIFF files using CCITT compression. Raw CCITT compressed image files are
usually not supported in end-user applications, but can only be generated with fax-
related software.

Raw data. Uncompressed (raw) image data may be useful for some special applica-
tions, e.g., constructing a color ramp directly in memory. The nature of the image is de-
duced from the number of color components: 1 component implies a grayscale image, 3
components an RGB image, and 4 components a CMYK image.

3.4.2 Code Fragments for Common Image Tasks
Embedding raster images with PDFlib is easy to accomplish. First, the image file has to
be opened with a PDFlib function which does a brief analysis of the image parameters.
The PDF_open_image_file() function returns a handle which serves as an image descrip-
tor. This handle can be used in a call to PDF_place_image(), along with positioning and
scaling parameters:

if ((image = PDF_open_image_file(p, "jpeg", "image.jpg", "", 0)) == -1) {
fprintf(stderr,"Error: Couldn't read image file.\n");

} else {
PDF_place_image(p, image, (float) 0.0, (float) 0.0, (float) 1.0);
PDF_close_image(p, image);

}

The call to PDF_close_image() may or may not be required, depending on whether the
same image will be used again in the same document (see Section 3.4.3, »Re-using Image
Data«).

1. See http://www.libtiff.org
2. See http://www.imagemagick.org

http://www.libtiff.org
http://www.imagemagick.org

3.4 Image Handling 73

Scaling and dpi calculations. PDFlib never changes the number of pixels in an import-
ed image. Scaling either blows up or shrinks image pixels, but doesn’t do any downsam-
pling. A scaling factor of 1 results in a pixel size of 1 unit in user coordinates. In other
words, the image will be imported at 72 dpi if the user coordinate system hasn’t been
scaled (since there are 72 default units to an inch).

Resolution (dpi) values which may be contained in the original image file are ig-
nored by PDFlib, but may be queried via the resx and resy parameters; the user is respon-
sible for scaling the coordinate system appropriately (beware of non-square pixels). The
following algorithm may be used to import an image at the resolution given in the file
(or at 72 dpi if the image file doesn’t contain any dpi value), and place it on the full page:

/* query the dpi values which may be present in the image file */
dpi_x = PDF_get_value(p, "resx", image);
dpi_y = PDF_get_value(p, "resy", image);

/* calculate scaling factors from the dpi values, see description of resx/resy */
if (dpi_x > 0 && dpi_y > 0) { /* resx and resy are specified in the file */

scale_x = ((float) 72.0) / dpi_x;
scale_y = ((float) 72.0) / dpi_y;

} else if (dpi_x < 0 && dpi_y < 0) { /* only the ratio of resx and resy is known*/
scale_x = (float) 1.0;
scale_y = dpi_y / dpi_x;

} else { /* no information about resx and resy av. */
scale_x = (float) 1.0;
scale_y = (float) 1.0;

}

/* create a new page such that the scaled image exactly fits, and place the image */
PDF_begin_page(p, PDF_get_value(p, "imagewidth", image) * scale_x,

PDF_get_value(p, "imageheight", image) * scale_y);
PDF_scale(p, scale_x, scale_y);
PDF_place_image(p, image, 0.0, 0.0, 1.0);
PDF_close_image(p, image);
PDF_end_page(p);

In order to ignore any dpi value present in the image, and use a fixed dpi value instead
(e.g. 300) replace the first two lines in the above code fragment with

dpi_x = 300;
dpi_y = 300; /* or whatever you want */

Forcing printed image size. In order to place an image on a PDF page such that it re-
sults in a specified target width and height (as opposed to specifying the resolution val-
ues as in the previous algorithm) with a lower left corner at (x, y) (all coordinates in
points) the following algorithm may be used:

scale_x = width/PDF_get_value(p, "imagewidth", image);
scale_y = height/PDF_get_value(p, "imageheight", image);

PDF_save(p);

/* scale the coordinate system to match the image size to the given rectangle */
PDF_scale(p, scale_x, scale_y);

/* in the positioning coordinates we must compensate for the above scaling */
PDF_place_image(p, image, x/scale_x, y/scale_y, 1);

74 Chapter 3: PDFlib and PDI Programming

PDF_close_image(p, image);
PDF_restore(p);

Non-proportional image scaling. Since in most cases images will be scaled proportion-
ally (i.e., using the same scaling factor in both dimensions), PDF_place_image() supports
only a single scaling parameter which is applied to both dimensions. Non-proportional
scaling can easily be achieved by scaling the coordinate system, bracketed with save/re-
store in order to not disturb other graphics operations. The following sequence will
place an image, scaled to 50 percent horizontally and 75 percent vertically:

PDF_save(p); /* save the original coordinate system */
PDF_scale(p, 0.5, 0.75); /* scale the coordinates, and therefore the image */
PDF_place_image(p, image, 0.0, 0.0, 1.0);
PDF_restore(p); /* restore the original coordinate system */

Remember that the x and y positions supplied to PDF_place_image() will also be subject
to the PDF_scale() call, and must be adjusted by dividing by the scaling factors.

A code fragment for placing images in a top-down coordinate system can be found in
Section 3.2.1, »Coordinate Systems«.

3.4.3 Re-using Image Data
It should be emphasized that PDFlib supports an important PDF optimization tech-
nique for using repeated raster images.

Consider a layout with a constant logo or background on several pages. In this situa-
tion it is possible to include the image data only once in the PDF, and generate only a
reference on each of the pages where the image is used. Simply open the image file and
call PDF_place_image() every time you want to place the logo or background on a partic-
ular page. You can place the image on multiple pages, or use different scaling factors for
different occurrences of the same image (as long as the image hasn’t been closed). De-
pending on the image’s size and the number of occurrences, this technique can result in
enormous space savings.

3.4.4 Memory Images and External Image References
While the majority of image data for use with PDFlib will be pulled from some disk file
on the local file system, other image data sources are also supported. For performance
reasons supplying existing image data directly in memory may be preferable over
opening a disk file. PDFlib supports in-core image data for certain image file formats.

PDFlib also supports an experimental feature which isn’t recommended for general-
use PDF files, but may offer advantages in certain environments. While almost all PDF
documents are completely self-contained (the only exception being non-embedded
fonts), it is also possible to store only a reference to some external data source in the
PDF file instead of the actual image data, and rely on Acrobat to fetch the required im-
age data when needed. This mechanism works similar to the well-known image refer-
ences in HTML documents. Usable external image sources include data files in the local
file system, and URLs. It is important to note that while file references work in Acrobat 3
and 4, URL references only work in Acrobat 4 or above (full product). PDF documents
which include image URLs are neither usable in Acrobat 3 nor Acrobat Reader 4/5!

The PDF_open_image() interface can be used for both in-memory image data and ex-
ternal references.

3.4 Image Handling 75

3.4.5 Image Masks and Transparency

Transparency in PDF. Transparency has been missing from PostScript and PDF for
quite a long time. Only with PDF 1.3 (and PostScript 3) Adobe integrated some limited
support for transparency into languages and applications. While image masks (painting
solid color through a bitmap mask) are an old feature of both PostScript and PDF, Acro-
bat 4 added the feature of masking particular pixels of an image. This offers the follow-
ing opportunities:
> Masking by position: an image may carry the intrinsic information »print the fore-

ground only, but not the background«. This is often used in catalog images.
> Masking by color value: pixels of a certain color (or from a color range – but not arbi-

trary sets of colors) are not painted, but the previously painted part of the page
shines through instead. In TV and video technology this is also known as bluescreen-
ing, and is most often used for combining the weather man and the map into one
image.

It is important to note that PDF 1.3 supports binary transparency only: there is no alpha
channel or variable opacity (»blend this image with the background«) but only a binary
decision (»print either the image pixel, or the background pixel«). Binary transparency
may be considered »poor man’s alpha channel«. Another important restriction is that
in PDF the mask is always attached to the image; it's not possible to use an image first
with a mask, and the same image a second time without a mask, or with a different
mask.

Note PDF 1.4 supports real transparency, but this feature is not currently supported in PDFlib.

Viewing and printing PDF files with transparency. Equally important as PDF’s intrinsic
limitations with respect to transparency are the practical limitations when it comes to
using PDF files with transparency in the viewer application. The following restrictions
should be noted. They do not apply to image masks (see below):
> Transparency only works in PDF 1.3/Acrobat 4 and above – older viewers will com-

pletely ignore transparency information, and display or print the whole image
(overpainting the background).

> Printing transparent images to PostScript Level 1 or 2 doesn't work, even with Acro-
bat 4 (since transparency support only appeared in PostScript 3, and can’t easily be
emulated). Acrobat prints the base image without the mask.

> If an image is masked by position, Acrobat 4 viewers will only honour the clipping
up to a certain image size, and display the whole image otherwise. It appears from
experimentation that the following limit applies to Acrobat 4 (Acrobat 5 is not affect-
ed by this limit):

 width x height x components < 1024 K

Images above this limit are displayed without applying the mask. The limit in a typi-
cal PostScript 3 printer seems to be lower, resulting in PostScript errors when trying
to print PDF documents with large masked images.

Transparency support in PDFlib. PDFlib supports both masking by position and by col-
or value (only single color values, but not ranges). PDFlib supports three kinds of trans-
parency information: implicit transparency, explicit transparency, and image masks.

76 Chapter 3: PDFlib and PDI Programming

Implicit transparency. In the implicit case, the transparency information from an ex-
ternal image file is respected, provided the image file format supports transparency or
an alpha channel (this is not the case for all image file formats). Transparency informa-
tion is detected in the following image file formats:
> GIF image files may contain a single transparent color value which is respected by

PDFlib.
> PNG image files may contain several flavors of transparency information, or a full al-

pha channel. PDFlib tries to preserve as much as possible from this information: sin-
gle transparent color values are retained; if multiple color values with an attached
alpha value are given, only the first one with an alpha value below 50 percent is
used; a full alpha channel is ignored.

Explicit transparency. The explicit case requires two steps, both of which involve im-
age operations. First, an image must be prepared for later use as a binary transparency
mask. This is accomplished by using the standard image file function with the addition-
al mask parameter. In order to be usable as a mask, an image must have a bit depth of 1,
i.e., only plain bitmaps are suitable as a mask. The following kinds of images can be used
for constructing a mask:
> PNG images
> TIFF images (only single-strip)
> raw in-memory images

Pixel values of 0 in the mask will result in the corresponding area of the masked image
being painted, while pixel values of 1 result in the background shining through. In the
second step this mask is applied to another image which itself is acquired through one
of the image functions:

mask = PDF_open_image_file(p, "png", maskfilename, "mask", 0);
image = PDF_open_image_file(p, type, filename, "masked", mask)
if (mask != -1 && image != -1) {

PDF_place_image(p, image, x, y, scale);
} else {

...
}

Note the different use of the optional string parameter for PDF_open_image_file(): mask
for defining a mask, and masked for applying a mask to another image. The integer pa-
rameter is unused in the first step, and carries the mask descriptor in the second step.

The image and the mask may have different pixel dimensions; the mask will auto-
matically be scaled to the image’s size. Masked images are not supported in Acrobat 3
compatibility mode.

Note PDFlib converts multi-strip TIFF images to multiple PDF images, which would be masked indi-
vidually. Since this is usually not intended, this kind of images will be rejected both as a mask
as well as a masked target. Also, it is important to not mix the implicit and explicit cases, i.e.,
don’t use images with transparent color values as mask.

Image masks. Image masks are images with a bit depth of 1 (bitmaps) in which 0-bits
are treated as transparent: whatever contents already exist on the page will shine
through the transparent parts of the image. 1-bit pixels are colorized with the current
fill color. The following kinds of images can be used as image masks:

3.4 Image Handling 77

> PNG images
> TIFF images (single- or multi-strip)
> raw in-memory images

Image masks are simply opened with the mask parameter, and placed on the page after
the desired fill color has been set:

mask = PDF_open_image_file(p, "tiff", maskfilename, "mask", 0);
PDF_setcolor(p, "fill", "rgb", (float) 1, (float) 0, (float) 0, (float) 0);
if (mask != -1) {

PDF_place_image(p, mask, x, y, scale);
}

If you want to apply a color to an image without the 0-bit pixels being transparent you
must use the colorize feature (see Section 3.4.6, »Colorizing Images«).

Ignoring transparency. Sometimes it is desirable to ignore any transparency informa-
tion which may be contained in an image file. For example, Acrobat’s anti-aliasing fea-
ture (also known as »smoothing«) isn’t used for 1-bit images which contain black and
transparent as their only colors. For this reason imported images with fine detail (e.g.,
rasterized text) may look ugly when the transparency information is retained in the
generated PDF. In order to solve this problem, PDFlib’s automatic transparency support
can be disabled with the ignoremask parameter when opening the file:

image = PDF_open_image_file(p, "gif", filename, "ignoremask", 0);

3.4.6 Colorizing Images
Similarly to image masks, where a color is applied to the non-transparent parts of an
image, PDFlib supports colorizing an image with a spot color. This feature works for
black and white or grayscale images in the following formats:
> PNG
> JPEG
> TIFF (single- or multi-strip)
> GIF (since GIF images always use an RGB palette colorizing is only reasonable when

the palette contains only gray values, and the palette index is identical to the gray
value. PDFlib does not check this condition).

In order to colorize an image with a spot color you must supply the colorize parameter
when opening the image, and supply the respective spot color handle which must have
been retrieved with PDF_makespotcolor():

PDF_setcolor(p, "both", "cmyk", 1, .79, 0, 0);
spot = PDF_makespotcolor(p, "Reflex Blue CV", 0);
image = PDF_open_image_file(p, "tiff", "image.tif", "colorize", spot)
if (image != -1) {

PDF_place_image(p, image, x, y, scale);
}

3.4.7 Multi-Page Image Files
PDFlib supports TIFF files which contain more than one image, also known as multi-
page files. In order to use multi-page TIFFs, additional string and numerical parameters
are used in the call to PDF_open_image_file():

78 Chapter 3: PDFlib and PDI Programming

image = PDF_open_image_file(p, "tiff", filename, "page", 1);

The page parameter indicates that a multi-image file is to be used, and is only supported
for TIFF images. The last parameter specifies the number of the image to use. The first
image is numbered 1. This parameter may be increased until PDF_open_image_file() re-
turns -1, signalling that no more images are available in the file.

A code fragment similar to the following can be used to convert all images in a multi-
image TIFF file to a multi-page PDF file:

for (frame = 1; /* */ ; frame++) {
image = PDF_open_image_file(p, "tiff", filename, "page", frame);
if (image == -1)

break;
PDF_begin_page(p, width, height);
PDF_place_image(p, image, 0.0, 0.0, 1.0);
PDF_close_image(p, image);
PDF_end_page(p);

}

3.5 PDF Import with PDI
Note All functions described in this section require the additional PDF import library (PDI) which is

not part of the PDFlib source code distribution. Please visit our Web site for more information
on obtaining PDI.

3.5.1 PDI Features and Applications
When the optional PDI (PDF import) library is attached to PDFlib, pages from existing
PDF documents can be processed with all supported language bindings. The PDI prod-
uct contains a parser for the PDF file format, and prepares pages from existing PDF doc-
uments for easy use with PDFlib. Conceptually, imported PDF pages are treated similar-
ly to imported raster images such as TIFF or PNG: you open a PDF document, choose a
page to import, and place it on an output page, applying any of PDFlib’s transformation
functions for translating, scaling, rotating, or skewing the imported page. Imported
pages can easily be combined with new content by using any of PDFlib’s text or graphics
functions after placing the imported PDF page on the output page (think of the import-
ed page as the background for new content). Using PDFlib and PDI you can easily accom-
plish the following tasks:
> place a PDF background page and populate it with dynamic data (e.g., mail merge,

personalized PDF documents on the Web, form filling)
> overlay two or more pages from multiple PDF documents (e.g., add stationary to ex-

isting documents in order to simulate preprinted paper stock)
> place PDF ads in existing documents
> clip the visible area of a PDF page in order to get rid of unwanted elements (e.g., crop

marks), or scale pages
> impose multiple pages on a single sheet for printing
> add some text (e.g., headers, footers, stamps, page numbers) or images (e.g., company

logo) to existing PDF pages
> copy all pages from an input document to the output document, and place barcodes

on the pages

3.5 PDF Import with PDI 79

3.5.2 Using PDI Functions with PDFlib

General considerations. It is important to understand that PDI will only import the ac-
tual page contents, but not any hypertext features (such as sound, movies, embedded
files, hypertext links, form fields, bookmarks, thumbnails, and notes) which may be
present in the imported PDF document. These hypertext features can be generated with
the corresponding PDFlib functions. Similarly, you can not re-use individual elements
of imported pages with other PDFlib functions. For example, re-using fonts from im-
ported documents for some other content is not possible. Instead, all required fonts
must be configured in PDFlib. If multiple imported documents contain embedded font
data for the same font, PDI will not remove any duplicate font data. On the other hand,
if fonts are missing from some imported PDF, they will also be missing from the gener-
ated PDF output file. As an optimization you should keep the imported document open
as long as possible in order to avoid the same fonts to be embedded multiple times in
the output document.

PDI does not change the color of imported PDF documents in any way. For example,
if a PDF contains color profiles these will be retained in the output document.

PDFlib uses the template feature for placing imported PDF pages on the output page.
Since some third-party PDF software does not correctly support the template feature,
restrictions in certain environments other than Acrobat may apply (see Section 3.2.4,
»Templates«).

PDFlib-generated output which contains imported pages from other PDF documents
can be processed with PDFlib/PDI again. However, due to restrictions in PostScript
printing the nesting level should not exceed 10.

Code fragments for importing PDF pages. Dealing with pages from existing PDF docu-
ments is possible with a very simple code structure. The following code snippet opens a
page from an existing document, and copies the page contents to a new page in the out-
put PDF document (which must have been opened before):

int doc, page, pageno = 1;
float sheetwidth, sheetheight;
char *filename = "input.pdf";

...

doc = PDF_open_pdi(p, filename, "", 0);
if (doc == -1) {

printf("Couldn't open PDF input file '%s'\n", filename);
exit(1);

}
page = PDF_open_pdi_page(p, doc, pageno, "");
if (page == -1) {

printf("Couldn't open page %d of PDF file '%s'\n", pageno, filename);
exit(2);

}
sheetwidth = PDF_get_pdi_value(p, "width", doc, page, 0);
sheetheight = PDF_get_pdi_value(p, "height", doc, page, 0);

PDF_begin_page(p, sheetwidth, sheetheight);
PDF_place_pdi_page(p, page, 0.0, 0.0, 1.0, 1.0);
PDF_close_pdi_page(p, page);

80 Chapter 3: PDFlib and PDI Programming

...add more content to the page using PDFlib functions...
PDF_end_page(p);

The PDFlib distribution contains PDI examples for all supported language bindings
which demonstrate various applications of PDI features:
> The personalization demo pulls a page from an existing PDF document, and places

additional text on the page.
> The quick reference demo extracts several pages from an existing PDF document,

scales down the pages, and places multiple pages on an output sheet.
> The imposition demo (which is only available in C code) is a generalization of the

quick reference demo. It processes an arbitrary number of PDF documents, and plac-
es n x m pages on an output sheet. In addition, lines are drawn around the scaled-
down pages.

Dimensions of imported PDF pages. Imported PDF pages are regarded similarly to im-
ported raster images, and can be placed on the output page using PDF_place_pdi_page().
By default, PDI will import the page exactly as it is displayed in Acrobat, in particular:
> cropping will be retained (in technical terms: if a CropBox is present, PDI favors the

CropBox over the MediaBox; see Section 3.2.2, »Page and Coordinate Limits«);
> rotation which has been applied to the page will be retained.

Alternatively, you can use the pdiusebox parameter to explicitly instruct PDI to use any
of the MediaBox, CropBox, BleedBox, TrimBox or ArtBox entries of a page (if present) for
determining the size of the imported page (see Table 4.17 for details).

Many important properties, such as the page size of an imported PDF page, all of the
Box entries, and the number of pages in a document, can be queried via PDFlib’s param-
eter mechanism. The relevant parameters are listed in Table 4.16 and Table 4.17. These
properties can be useful in making decisions about the placement of imported PDF pag-
es on the output page. The algorithms presented in Section 3.4.2, »Code Fragments for
Common Image Tasks« for images can be used for scaling imported PDF pages as well.

Dealing with Acrobat 5/PDF 1.4 files. PDI is fully compatible to PDF 1.4 files generated
with Acrobat 5. However, you should be aware of the following: Imported PDF docu-
ments must not have a higher PDF version number than the generated PDF output.
Since the default output mode in PDFlib 4 is Acrobat 4/PDF 1.3, imported PDF 1.4 files
will be rejected by default. You can modify this behavior by changing PDFlib’s PDF out-
put version as follows:

PDF_set_parameter(p, "compatibility", "1.4")

This will result in Acrobat 5/PDF 1.4 compatible output, which in turn allows you to also
import files according to PDF 1.4.

3.5.3 Acceptable PDF Documents
Generally, PDI will happily process all kinds of PDF documents which can be opened
with Acrobat, regardless of PDF version number or features used within the file. How-
ever, in rare cases a PDF document or a particular page of a document may be rejected
by PDI. Depending on the pdiwarning parameter, unacceptable PDF files will simply re-
sult in an error return value, or a nonfatal exception with a detailed explanation. The
following kinds of PDF documents can not be imported with PDI:

3.5 PDF Import with PDI 81

> PDF documents which use a higher PDF version number than the PDF output docu-
ment that is currently being generated. The reason is that PDFlib can no longer make
sure that the output will actually conform to the requested PDF version after a PDF
with a higher version number has been imported. Solution: set the version of the
output PDF to the required level using the compatibility parameter.

> Files with a damaged cross-reference table. You can identify such files by Acrobat’s
warning message File is damaged but is being repaired. Solution: open and resave the
file with Acrobat.

> Encrypted PDF documents (i.e., any security settings with or without user password
applied). Solution: remove all security settings in Acrobat and resave the document.
Obviously, you will need the document’s password to do so.

> Since PDFlib/PDI do not contain any implementation of the LZW algorithm, certain
PDF pages which use LZW compression (more specifically, LZW-compressed pages
with multiple content streams) will be rejected (unsupported filter). Solution: resave
the document in Acrobat 4.0 or above. Note that Acrobat 4.0 and above will never
generate this kind of offended file, but only Acrobat 3 under certain circumstances,
and Acrobat Capture 2. For this reason you are unlikely to run into this restriction. If
you have a large number of such files which must be converted you should look into
Acrobat’s batch optimization feature.

3.5.4 PDF Import, Templates and graphics/text state inheritance
The interaction of graphics parameters which have been explicitly set on a page, and
those which are set on a template or imported PDF page raise the issue of graphics state
inheritance. For example, when the current color is set to blue, and the template or im-
ported page draws an object, should the object also be blue? While this may appear to be
an easy matter, it is complicated by bugs in Acrobat’s printer driver, which may actually
result in printed output which differs from the screen display of the PDF. For this rea-
son PDFlib implements the following behavior:
> When the inheritgstate parameter is true, templates and imported PDF pages may in-

herit text or graphics parameters from the importing page.
> When the inheritgstate parameter is false, PDFlib will make sure that templates and

imported PDF pages do not depend on the contents of the surrounding page and do
not change their appearance. In order to achieve this, PDFlib will appropriately ini-
tialize all relevant text and graphics parameters before placing the template.

For compatibility reasons, the default value of the inheritgstate parameter is true. How-
ever, this behavior is considered dangerous, confusing, and deprecated, and we urge all
PDFlib users not to rely on graphics state inheritance.

Note Future versions of PDFlib will no longer support the inheritgstate parameter, and will always
use the behaviour as discussed above for »false«.

82 Chapter 4: PDFlib and PDI API Reference

4 PDFlib and PDI API Reference
The API reference documents all supported PDFlib functions. A few functions are not
supported in certain language bindings since they are not necessary. These cases are
mentioned in appropriate notes.

4.1 Data Types, Naming Conventions, and Scope
PDFlib data types. The exact syntax to be used for a particular language binding may
actually vary slightly from the C syntax shown here in the reference. This especially
holds true for the PDF document parameter (PDF * in the API reference) which has to be
supplied as the first argument to almost all PDFlib functions in the C binding, but not
those bindings which hide the PDF document parameter in an object created by the lan-
guage wrapper.

Table 4.1 details the use of the PDF document type and the string type in all language
bindings. The data types integer, long, and float are not mentioned since there is an obvi-
ous mapping of these types in all bindings. Please refer to the respective language sec-
tion and the examples in Chapter 2 for more language-specific details.

Naming conventions for PDFlib functions. In the C binding, all PDFlib functions live in
a global namespace and carry the common PDF_ prefix in their name in order to mini-
mize namespace pollution. In contrast, several language bindings hide the PDF docu-
ment parameter in an object created by the language wrapper. For these bindings, the
function name given in this API reference must be changed by omitting the PDF_ prefix
and the PDF * parameter used as first argument. For example, the C-like API description

PDF *p;
...
PDF_open_file(PDF *p, const char *filename);

translates to the following when the function is used from Java:

Table 4.1. Data types in the language bindings

language binding p parameter? PDF_ prefix? string data type binary data type
C (also used in
this API reference)

yes yes const char * 1

1. C language NULL string values and empty strings are considered equivalent.

const char *

C++ no no string2

2. NULL string values must not be used in the C++ binding.

char *
Java no no String byte[]
.NET no no String byte[]
Perl yes yes string string
PHP yes yes string string
Python yes yes string string
RPG yes yes string, but must add x’00’ data
Tcl yes yes string byte array

4.1 Data Types, Naming Conventions, and Scope 83

pdflib p;
...
p.open_file(String filename);

Function scopes. Most PDFlib functions are subject to certain ordering and nesting
constraints which are derived from their contribution to the generated document. Most
of these constraints are rather obvious. For example, you must begin a page before you
can close it. In the same spirit, the functions for opening a PDF document and closing it
must always be paired. PDFlib uses a strict scoping system for defining and verifying
the correct ordering of functions used by client programs. The function descriptions
reference these scopes; the scope definitions can be found in Table 4.2. Figure 4.1 depicts
the relationship of scopes. PDFlib will throw an exception if a function is called outside
the allowed scope. You can query the current scope with the scope parameter.

Table 4.2. Function scope definitions

scope name definition
path started by one of PDF_moveto(), PDF_circle(), PDF_arc(), PDF_arcn(), or PDF_rect()

terminated by any of the functions in Section 4.4.5, »Path Painting and Clipping«
page between PDF_begin_page() and PDF_end_page(), but outside of path scope
template between PDF_begin_template() and PDF_end_template(), but outside of path scope
pattern between PDF_begin_pattern() and PDF_end_pattern(), but outside of path scope
document between PDF_open_*() and PDF_close(), but outside of page, template, and pattern scope
object in Java: the lifetime of the pdflib object, but outside of document scope;

in other bindings between PDF_new() and PDF_delete(), but outside of document scope
null outside of object scope
any when a function description mentions »any« scope it actually means any except null, since a

PDFlib object doesn’t even exist in null scope.

page page page page

pathpath

template pattern

document

. . .

. . .

objectnull

path path

page page page page

pathpath

template pattern

document

. . .

path path
Fig. 4.1.

Relationship of scopes

84 Chapter 4: PDFlib and PDI API Reference

4.2 General Functions
4.2.1 Setup

Table 4.3 lists relevant parameters and values for this section.

void PDF_boot(void)
void PDF_shutdown(void)

Boot and shut down PDFlib, respectively.

Scope null

Bindings C: Recommended for the C language binding, although currently not required.

Other bindings: For all other language bindings booting and shutting down is accom-
plished automatically by the wrapper code, and these functions are not available.

Table 4.3. Parameters and values for the setup functions

function key explanation
set_parameter compatibility Set PDFlib’s compatibility mode to one of the strings »1.2«, »1.3«, or »1.4« for

Acrobat 3, 4, or 5. The default is »1.3« (see Section 1.3, »PDFlib Output and
Compatibility«). This parameter must be set before the first call to PDF_open_*().
Scope: object.

set_parameter flush Set PDFlib’s flushing strategy to none, page, content, or heavy. The default is page.
See Section 3.1.2, »Generating PDF Documents directly in Memory« for details. This
parameter is only available in the C and C++ language bindings. Scope: any.

set_parameter prefix Resource file name prefix as used in a UPR file (see Section 3.3.7, »Resource
Configuration and the UPR Resource File«). The prefix must only be set once. It
contains a slash character plus a path name, which in turn may start with a slash.
Scope: object.

set_parameter resourcefile Relative or absolute file name of the PDFlib UPR resource file. The resource file will
be loaded at the next attempt to access resources. The resource file name must
only be set once. This call should occur before the first page. Scope: object.

set_parameter serial Set the PDFlib and/or PDI serial string. The serial string can only be set once before
the first call to PDF_begin_page(). Scope: object.

set_parameter warning Enable or suppress warnings (nonfatal exceptions). Possible values are true and
false, default value is true. Scope: any

set_value compress Set the compression parameter to a value from 0–9. This parameter does not
affect precompressed image data handled in pass-through mode. Scope: any.
0 no compression
1 best speed
6 default value
9 best compression

get_value major
minor
revision

Return the major, minor, or revision number of PDFlib, respectively. Scope: any,
null1.

1. May be called with a PDF * argument of NULL or 0.

get_parameter version Return the full PDFlib version string in the format <major>.<minor>.<revision>,
possibly suffixed with additional qualifiers such as beta, rc, etc. Scope: any, null1.

get_parameter scope Return the name of the current scope. Scope: any.

4.2 General Functions 85

PDFlib_api * PDF_boot_dll(void)
void PDF_shutdown_dll(PDFlib_api *PDFlib)

Load the PDFlib DLL at runtime and boot it, or shut down PDFlib and unload the DLL.

PDFlib A pointer to a PDFlib API structure returned by PDF_boot_dll().

Returns If PDF_boot_dll() is successful it will return a pointer to a structure filled with pointers to
all PDFlib API functions. If the DLL cannot be loaded, or a mismatch of major or minor
version number is detected, NULL will be returned.

Details PDF_boot_dll() will attempt to load the PDFlib DLL at runtime, and call PDF_boot(). PDF_
shutdown_dll() will call PDF_shutdown(), and unload the PDFlib DLL. The members of the
structure returned by PDF_boot_dll() have identical names with the corresponding
PDFlib API functions, and can be used by the client. It is an error to use any of these
pointers after calling PDF_shutdown(). This pair of functions should only be called once
per application. The client is responsible for synchronizing calls to these functions ap-
propriately.

Scope null

Bindings C: These functions are not part of the PDFlib core library, but are available in the auxilia-
ry module pdflibdl.c which must explicitly be linked against the application. These func-
tions are not supported on all platforms.

Other bindings: These functions are not required, and are not available.

int PDF_get_majorversion(void)
int PDF_get_minorversion(void)

Deprecated, use PDF_get_value(p, "major", 0) or PDF_get_value(p, "minor", 0) instead.

PDF *PDF_new(void)

Create a new PDF object with default settings.

Details This function creates a new PDF object, using PDFlib’s internal default error handling
and memory allocation routines.

Returns A handle to a PDF object which is to be used in subsequent PDFlib calls. The contents of
the PDF structure are considered private to PDFlib; only pointers to the PDF structure
are used at the API level.

This function does not return any error code. If it doesn’t succeed due to unavailable
memory, a PDFlib exception is raised.

Scope null; this function start object scope, and must always be paired with a matching PDF_
delete() call.

Bindings The data type used for the opaque PDF object handle varies among language bindings.
This doesn’t really affect PDFlib clients, since all they have to do is pass the PDF handle
as the first argument to all functions.

C++: this function is not available since it is hidden in the PDF constructor.

86 Chapter 4: PDFlib and PDI API Reference

ActiveX, Java: this function is automatically called by the wrapper code, and therefore
not available.

PDF *PDF_new2(
void (*errorhandler)(PDF *p, int type, const char *msg),
void* (*allocproc)(PDF *p, size_t size, const char *caller),
void* (*reallocproc)(PDF *p, void *mem, size_t size, const char *caller),
void (*freeproc)(PDF *p, void *mem),
void *opaque)

Create a new PDF object with client-supplied error handling and memory allocation
routines.

errorhandler Pointer to a user-supplied error-handling function.

allocproc Pointer to a user-supplied memory allocation function.

reallocproc Pointer to a user-supplied memory reallocation function.

freeproc Pointer to a user-supplied free function.

opaque Pointer to some user data which may be retrieved later with PDF_get_
opaque().

Returns A pointer to the opaque PDF data type which is required as the p argument for all other
functions.

Details This function creates a new PDF object with client-supplied error handling and memory
allocation routines. Unlike PDF_new(), the caller may optionally supply own procedures
for error handling and memory allocation. The function pointers for the error handler,
the memory procedures, or both may be NULL. PDFlib will use default routines in these
cases. Either all three memory routines must be provided, or none.

Scope null; this function starts object scope, and must always be paired with a matching PDF_
delete() call. No other PDFlib function with the same PDFlib object must be called after
calling this function.

Bindings C++: this function is indirectly available via the PDF constructor. Not all function argu-
ments must be given since default values of NULL are supplied. All supplied functions
must be »C« style functions, not C++ methods.

Other bindings: this function is automatically called by the wrapper code, and therefore
not available. In Java, however, it can explicitly called from client code in order to over-
come shortcomings with Java’s finalizer system.

void PDF_delete(PDF *p)

Delete a PDF object and free all internal resources.

Details This function deletes a PDF object and frees all document-related PDFlib-internal re-
sources. Although not necessarily required for single-document generation, deleting
the PDF object is heavily recommended for all server applications when they are done
producing PDF. This function must only be called once for a given PDF object. PDF_
delete() should also be called from client-supplied error handlers for cleanup. If more

4.2 General Functions 87

than one PDF document will be generated it is not necessary to call PDF_delete() after
each document, but only when the complete sequence of PDF documents is done.

Scope object or user-defined error handler (C and C++ only); this function terminates object
scope, and must always be paired with a matching call to one of the PDF_new() or PDF_
new2 () functions.

Bindings C++: this function is indirectly available via the PDF destructor.

Java: this function is automatically called by the wrapper code, and therefore not avail-
able.

void *PDF_get_opaque(PDF *p)

Fetch opaque application pointer stored in PDFlib.

Details This function returns the opaque application pointer stored in PDFlib which has been
supplied in the call to PDF_new2(). PDFlib never touches the opaque pointer, but sup-
plies it unchanged to the client. This may be used in multi-threaded applications for
storing private thread-specific data within the PDF object.

Scope any

Bindings Only available in the C and C++ bindings.

4.2.2 Document and Page
Table 4.4 lists relevant parameters and values for this section. Section 4.8.1, »Document
Open Action and Open Mode« presents additional relevant parameters.

int PDF_open_file(PDF *p, const char *filename)

Create a new PDF file using the supplied file name.

filename Name of the PDF output file to be generated. If filename is empty the PDF
document will be generated in memory instead of on file. The result must be fetched by
the client with the PDF_get_buffer() function. PDF_open_file() will always succeed in this
case, and never return the -1 (in PHP: 0) error value.

The special file name »–« can be used for generating PDF on the stdout channel (this
obviously does not apply to environments which don’t support the notion of a stdout

Table 4.4. Parameters and values for the document and page functions

function key explanation
set_value pagewidth

pageheight
Change the page size of the current page. Scope: page.

get_value pagewidth
pageheight

Get the page size of the current page. Scope: page.

set_value CropBox,
BleedBox,
ArtBox,
TrimBox

Change one of the box parameters of the current page. These parameters must
only be used within a page description. The parameter name must be followed by
a slash ’/’ character and one of llx, lly, urx, ury, for example: CropBox/llx (see
Section 3.2.2, »Page and Coordinate Limits« for details). Scope: page.

88 Chapter 4: PDFlib and PDI API Reference

channel, such as Mac OS 9). On Windows it is OK to use UNC paths or mapped network
drives.

Returns -1 (in PHP: 0) on error, and 1 otherwise.

Details This function creates a new PDF file using the supplied filename. PDFlib will attempt to
open a file with the given name, and close the file when the PDF document is finished.

Scope object; this function starts document scope if the file could successfully be opened, and
must always be paired with a matching PDF_close() call.

Bindings C++: this function is hidden in the overloaded open() call.
C, C++, Java, JScript: take care of properly escaping the backslash path separator. For ex-
ample, the following denotes a file on a network drive: \\\\malik\\rp\\foo.pdf.

int PDF_open_fp(PDF *p, FILE *fp)

Open a new PDF file, using the supplied file handle.

fp Pointer to a C-style FILE structure to which the generated output PDF will be writ-
ten. On Mac, Windows, and AS/400 the fp file handle must have been opened in binary
mode, which is necessary for PDF output. On Windows PDFlib changes the output mode
of the supplied file handle to binary mode itself.

Returns -1 on error, and 1 otherwise.

Scope object; this function starts document scope if fp is not NULL, and must always be paired
with a matching PDF_close() call.

Bindings This function is deprecated, and will be removed in the future. It is only available in the
C and C++ bindings.

C++: this function is hidden in the overloaded open() call.

void PDF_open_mem(PDF *p, size_t (*writeproc)(PDF *p, void *data, size_t size))

Open a new PDF in memory, and install a callback for fetching the data.

writeproc Callback function which will be called by PDFlib in order to submit (portions
of) the generated PDF data.

Details This function opens a new PDF document in memory, without writing to a disk file. The
callback function must return the number of bytes written. If the return value doesn’t
match the size argument supplied by PDFlib, an exception will be thrown, and PDF gen-
eration stops. The frequency of writeproc calls is configurable with the flush parameter.
The default value of the flush parameter is page (see Section 3.1.2, »Generating PDF Doc-
uments directly in Memory« for details).

Scope object; this function starts document scope, and must always be paired with a matching
PDF_close() call.

Bindings This function is only available in the C and C++ bindings.

C++: this function is hidden in the overloaded open() call. writeproc must be a "C"-style
function, not a C++ method.

4.2 General Functions 89

Other bindings: use PDF_open_file() with an empty file name in order to create PDF doc-
uments in memory.

const char * PDF_get_buffer(PDF *p, long *size)

Get the contents of the PDF output buffer. The result must be used by the client before
calling any other PDFlib function.

size C-style Pointer to a memory location where the length of the returned data in
bytes will be stored.

Returns A buffer full of binary PDF data for consumption by the client. It returns a language-spe-
cific data type for binary data according to Table 4.1. The returned buffer can be used un-
til the end of the surrounding object scope.

Details Fetch the full or partial buffer containing the generated PDF data. If this function is
called between page descriptions, it will return the PDF data generated so far. If it is
called after PDF_close() it returns the remainder of the PDF document. If there is only a
single call to this function which happens after PDF_close() the returned buffer is guar-
anteed to contain the complete PDF document in a contiguous buffer.

Since PDF output contains binary characters, client software must be prepared to ac-
cept non-printable characters including null values.

Scope object, document (in other words: after PDF_end_page() and before PDF_begin_page(), or
after PDF_close() and before PDF_delete(). This function can only be used if an empty
filename has been supplied to PDF_open_file().

Bindings C and C++: the size parameter is only used for C and C++ clients.

Other bindings: an object of appropriate length will be returned, and the size parameter
must be omitted.

void PDF_close(PDF *p)

Close the generated PDF file, and release all document-related resources.

Details This function finishes the generated PDF document, free all document-related resourc-
es, and close the output file if the PDF document has been opened with PDF_open_file().
This function must be called when the client is done generating pages, regardless of the
method used to open the PDF document.

When the document was generated in memory (as opposed to on file), the document
buffer will still be kept after this function is called (so that it can be fetched with PDF_
get_buffer()), and will be freed in the next call to PDF_open(), or when the PDFlib object
goes out of scope in PDF_delete().

Scope document; this function terminates document scope, and must always be paired with a
matching call to one of the PDF_open_*() functions.

90 Chapter 4: PDFlib and PDI API Reference

void PDF_begin_page(PDF *p, float width, float height)

Add a new page to the document.

width, height The width and height parameters are the dimensions of the new page in
points. Acrobat’s page size limits are documented in Section 3.2.1, »Coordinate Sys-
tems«. A list of commonly used page formats can be found in Table 4.26 in Section 4.9,
»Page Size Formats«. The page size can be changed after calling PDF_begin_page() with
the pagewidth and pageheight parameters. In order to produce landscape pages use
width > height. PDFlib uses width and height to construct the page’s MediaBox. You can
use several parameters to set other box entries in the PDF (see Table 4.3).

Scope document; this function starts page scope, and must always be paired with a matching
PDF_end_page() call.

Params pagewidth, pageheight, CropBox, BleedBox, ArtBox, TrimBox

void PDF_end_page(PDF *p)

Finish the page.

Details This function must be used to finish a page description.

Scope page; this function terminates page scope, and must always be paired with a matching
PDF_begin_page() call.

4.2.3 Parameter Handling
PDFlib maintains a number of internal parameters which are used for controlling
PDFlib’s operation and the appearance of the PDF output. Four functions are available
for setting and retrieving both numerical and string parameters. All parameters (both
keys and values) are case-sensitive. The descriptions of available parameters can be
found in the respective sections.

float PDF_get_value(PDF *p, const char *key, float modifier)

Get the value of some PDFlib parameter with numerical type.

key The name of the parameter to be queried.

modifier An optional modifier to be applied to the parameter. Whether a modifier is
required and what it relates to is explained in the various parameter tables. If the modi-
fier is unused it must be 0.

Returns The numerical value of the parameter.

Scope Depends on key.

See also PDF_get_pdi_value()

4.3 Text Functions 91

void PDF_set_value(PDF *p, const char *key, float value)

Set the value of some PDFlib parameter with numerical type.

key The name of the parameter to be set.

value The new value of the parameter to be set.

Scope Depends on key.

const char * PDF_get_parameter(PDF *p, const char *key, float modifier)

Get the contents of some PDFlib parameter with string type.

key The name of the parameter to be queried.

modifier An optional modifier to be applied to the parameter. Whether a modifier is
required and what it relates to is explained in the various parameter tables. If the modi-
fier is unused it must be 0.

Returns The string value of the parameter. The returned string can be used until the end of the
surrounding document scope.

Scope Depends on key.

Bindings C and C++: C and C++ clients must not free the returned string. PDFlib manages all string
resources internally.

See also PDF_get_pdi_parameter()

void PDF_set_parameter(PDF *p, const char *key, const char *value)

Set some PDFlib parameter with string type.

key The name of the parameter to be set.

value The new value of the parameter to be set.

Scope Depends on key.

4.3 Text Functions
4.3.1 Font Handling

Table 4.5 lists relevant parameters and values for this section.

Table 4.5. Parameters and values for the font functions (see Section 4.2.3, »Parameter Handling«)

function key explanation
set_parameter FontAFM

FontPFM
FontOutline
Encoding

The corresponding resource file line as it would appear for the respective category
in a UPR file (see Section 3.3.7, »Resource Configuration and the UPR Resource
File«). Multiple calls add new entries to the internal list. (See also prefix and
resourcefile in Table 4.3). Scope: any.

get_value font Return the identifier of the current font which must have been set with PDF_
setfont(). Scope: page, pattern, template.

92 Chapter 4: PDFlib and PDI API Reference

int PDF_findfont(PDF *p, const char *fontname, const char *encoding, int options)

Search for a font, and prepare it for later use.

fontname The name of the font as configured in PDFlib.

encoding For 8-bit fonts, encoding is one of builtin, macroman, winansi, ebcdic, or host
(see Section 3.3.2, »8-Bit Encodings built into PDFlib«), or the name of an external PDFlib-
supplied or user-defined encoding (see Section 3.3.3, »Custom Encoding and Code Page
Files for 8-Bit Encodings«). Note that in order to use arbitrary encodings, you will need
metrics information for the font (see Section 3.3.6, »PostScript, TrueType, and OpenType
Fonts«).

Alternatively, encoding can be the name of one of the built-in CMaps if fontname de-
scribes a CID font (see Section 3.3.8, »Japanese, Chinese, and Korean Text«). In this case
metrics information is not required. Case is significant for both fontname and encoding.

options Controls font processing. If a font is embedded the font outline file must be
available in addition to the metrics information (this is irrelevant for TrueType and
OpenType fonts), and the actual font definition will be included in the PDF output.
However, the font file will only be checked when this function is called, but not yet
used, since font embedding is done at the end of the generated PDF file. If a font is not
embedded only general font information is included in the PDF output.

Section 3.3.10, »Text Metrics, Text Variations, and Text Box Formatting«)Table 4.6
lists all possible values for the options parameter.

The options parameter must be 0 for CID fonts.

Returns A font handle for later use with PDF_setfont(). The behavior of this function changes
when the fontwarning parameter is set to false. In this case PDF_findfont() returns an er-

get_parameter fontname The name of the current font which must have been previously set with PDF_
setfont(). Scope: page, pattern, template.

get_parameter fontencoding The name of the encoding or CMap used with the current font. A font must have
been previously set with PDF_setfont(). Scope: page, pattern, template.

get_value fontsize Return the size of the current font which must have been previously set with PDF_
setfont(). Scope: page, pattern, template.

get_value capheight
ascender
descender

Return metrics information for the font identified by the modifier. See Section
3.3.10, »Text Metrics, Text Variations, and Text Box Formatting« for more details.
The values are measured in fractions of the font size, and must therefore be
multiplied by the desired font size. Scope: any.

set_parameter fontwarning If set to false, PDF_findfont() returns -1 (in PHP: 0) if the font/encoding
combination cannot be loaded (instead of throwing an exception). Default is true.
Scope: any.

Table 4.6. Values for the options parameter

value font embedding read kerning data if available
0 no no
1 yes no

Table 4.5. Parameters and values for the font functions (see Section 4.2.3, »Parameter Handling«)

function key explanation

4.3 Text Functions 93

ror code of -1 (in PHP: 0) if the requested font/encoding combination cannot be loaded,
and does not throw an exception. However, exceptions will still be thrown when bad pa-
rameters are passed.

The returned number – the font handle – doesn’t have any significance to the user
other than serving as an argument to PDF_setfont() and related functions. In particular,
requesting the same font/encoding combination in different documents may result in
different font handles.

Details This function prepares a font for later use with PDF_setfont(). The metrics will be loaded
from memory or from an external metrics file. If the requested font/encoding combina-
tion cannot be used due to configuration problem (e.g., a font, metrics, or encoding file
could not be found, or a mismatch was detected), an exception of type PDF_RuntimeError
will be raised. Otherwise, the value returned by this function can be used as font argu-
ment to other font-related functions.

CID fonts are not supported in Acrobat 3 compatibility mode.

Scope document, page, pattern, template

Params See Table 4.5.

void PDF_setfont(PDF *p, int font, float fontsize)

Set the current font in the given size.

font A font handle returned by PDF_findfont().

fontsize Size of the font, measured in units of the current user coordinate system.

Details The font must be set on each page before drawing any text. Font settings will not be re-
tained across pages. The current font can be changed an arbitrary number of times per
page.

Scope page, pattern, template

Params See Table 4.5. Sets the leading parameter to fontsize.

4.3.2 Text Output
Note All text supplied to the functions in this section must match the encoding selected with PDF_

findfont(). This applies to 8-bit text as well as Unicode or other encodings selected via a CMap.

Table 4.5 lists relevant parameters and values for this section.

void PDF_set_text_pos(PDF *p, float x, float y)

Set the current text position.

x, y The current text position to be set.

Details The text position is set to the default value of (0, 0) at the beginning of each page. The
current point for graphics output and the current text position are maintained sepa-
rately.

Scope page, pattern, template

94 Chapter 4: PDFlib and PDI API Reference

Params See Table 4.7.

Table 4.7. Parameters and values for the text functions (see Section 4.2.3, »Parameter Handling«)

function key explanation
set_value
get_value

leading Set or get the leading, which is the distance between baselines of adjacent lines of
text. The leading is used for PDF_continue_text() and set to the value of the font
size when a new font is selected using PDF_setfont(). Setting the leading equal to
the font size results in dense line spacing. However, ascenders and descenders of
adjacent lines will generally not overlap. Scope: page, pattern, template.

set_value
get_value

textrise Set or get the text rise parameter. The text rise specifies the distance between the
desired text position and the default baseline. Positive values of text rise move the
baseline up. The text rise always relates to the vertical coordinate. This may be
useful for superscripts and subscripts. The text rise is set to the default value of 0
at the beginning of each page. Scope: page, pattern, template.

set_value
get_value

textrendering Set or get the current text rendering mode. It can have one of the values given in
Table 3.11. The text rendering parameter is set to the default of 0 (= solid fill) at the
beginning of each page. Scope: page, pattern, template.

set_value
get_value

horizscaling Set or get the horizontal text scaling to the given percentage, which must be
greater than 0. Text scaling shrinks or expands the text by a given percentage. The
text scaling is set to the default of 100 at the beginning and end of each page. Text
scaling always relates to the horizontal coordinate. Scope: page, pattern,
template, document.

set_value
get_value

charspacing Set or get the character spacing, i.e., the shift of the current point after placing the
individual characters in a string. The spacing is given in units of the current user
coordinate system. It is reset to the default of 0 at the beginning and end of each
page. In order to spread the characters apart use positive values for horizontal
writing mode, and negative values for vertical writing mode. Scope: page, pattern,
template, document.

set_value
get_value

wordspacing Set or get the word spacing, i.e., the shift of the current point after placing
individual words in a text line. In other words, the current point is moved
horizontally after each ASCII space character (0x20). Since fonts with multi-byte
encodings don’t have an ASCII space character they are not affected by the word
spacing. The spacing value is given in text space units. It is reset to the default of 0
at the beginning and end of each page. Scope: page, pattern, template,
document.

get_value textx
texty

Get the x or y coordinate, respectively, of the current text position. These para-
meters are currently not supported for CID fonts. Scope: page, pattern, template.

set_parameter
get_parameter

underline
overline
strikeout

Set or get the current underline, overline, and strikeout modes, which are retained
until they are explicitly changed, or a new page is started. Theses modes can be
set independently from each other, and are reset to false at the beginning of each
page (see Section 3.3.10, »Text Metrics, Text Variations, and Text Box Formatting«).
Scope: page, pattern, template.
true underline/overline/strikeout text (does not work for CID fonts)
false do not underline/overline/strikeout text

set_parameter native-
unicode

If true, enable native Unicode text processing with UCS-2 encoding for language
bindings with Unicode support; disable if false. Default value is false (see Section
3.3.9, »Unicode Support«). Scope: any.

4.3 Text Functions 95

void PDF_show(PDF *p, const char *text)
void PDF_show2(PDF *p, const char *text, int len)

Print text in the current font and size at the current text position.

text The text to be printed.

len (Only for PDF_show2().) Length of text (in bytes) for strings which may contain
null characters. If len = 0 a null-terminated string is assumed.

Details Both font (via PDF_setfont()) and current text position (via PDF_set_text_pos() or some
text output function) must have been set before. The current text position is moved to
the end of the printed text.

Scope page, pattern, template

Params See Table 4.7.

Bindings C and C++: for PDF_show() text must not contain null characters, since it is assumed to
be null-terminated; use PDF_show2() for strings which may contain null characters.

Other bindings: PDF_show2() is not available since arbitrary string contents can be sup-
plied with PDF_show().

void PDF_show_xy(PDF *p, const char *text, float x, float y)
void PDF_show_xy2(PDF *p, const char *text, int len, float x, float y)

Print text in the current font at position (x, y).

text The text to be printed.

x,y The position in the user coordinate system where the text will be printed.

len (Only for PDF_show_xy2().) Length of text (in bytes) for strings which may contain
null characters. If len = 0 a null-terminated string is assumed.

Details The font must have been set before with PDF_setfont(). The current text position is
moved to the end of the printed text.

Scope page, pattern, template

Params See Table 4.7.

Bindings C and C++: for PDF_show_xy() text must not contain null characters, since it is assumed
to be null-terminated; use PDF_show_xy2() for strings which may contain null charac-
ters.

Other bindings: PDF_show_xy2() is not available since arbitrary string contents can be
supplied with PDF_show_xy().

96 Chapter 4: PDFlib and PDI API Reference

void PDF_continue_text(PDF *p, const char *text)
void PDF_continue_text2(PDF *p, const char *text, int len)

Print text at the next line.

text The text to be printed. If this is an empty string, the text position will be moved
to the next line anyway.

len (Only for PDF_continue_text2().) Length of text (in bytes) for strings which may
contain null characters. If len = 0 a null-terminated string is assumed as in PDF_
continue_text().

Details The positioning of text and the spacing between lines is determined by the leading pa-
rameter and the most recent call to PDF_show_xy() or PDF_set_text_pos(). This function
can also be used after PDF_show_boxed() if that function has been called with mode = left
or justify. The current point is moved to the end of the printed text.

Scope page, pattern, template; this function should not be used in vertical writing mode.

Params See Table 4.7.

Bindings C and C++: for PDF_continue_text() text must not contain null characters, since it is as-
sumed to be null-terminated; use PDF_continue_text2() for strings which may contain
null characters.

Other bindings: PDF_continue_text2() is not available since arbitrary string contents can
be supplied with PDF_continue_text().

int PDF_show_boxed(PDF *p, const char *text, float x, float y, float width, float height,
const char *mode, const char *feature)

Format text into a text box according to the requested formatting mode.

text The text to be formatted into the box. The text must not contain any null charac-
ters.

x, y The coordinates of a corner of the text box or the coordinates of the alignment
point if width = 0 and height = 0.

width, height The size of the text box, or 0 for single-line formatting.

mode mode selects the horizontal alignment mode. If width = 0 and height = 0, mode
can attain one of the values left, right, or center, and the text will be formatted according
to the chosen alignment with respect to the point (x, y), with y denoting the position of
the baseline. In this mode, this function does not check whether the submitted parame-
ters result in some text being clipped at the page edges, nor does it apply any line-wrap-
ping. It returns the value 0 in this case.

If width or height is different from 0, mode can attain one of the values left, right,
center, justify, or fulljustify. The supplied text will be formatted into a text box defined by
the lower left corner (x, y) (but see the description of top-down coordinates in Section
3.2.1, »Coordinate Systems«) and the supplied width and height. If the text doesn’t fit into
a line, a simple line-breaking algorithm is used to break the text into the next available
line, using existing space characters for possible line-breaks. While the left, right, and
center modes align the text on the respective line, justify aligns the text on both left and

4.3 Text Functions 97

right margins. According to common practice the very last line in the box will only be
left-aligned in justify mode, while in fulljustify mode all lines (including the last one if it
contains at least one space character) will be left- and right-aligned. fulljustify is useful if
the text is to be continued in another column.

feature If the feature parameter is blind, all calculations are performed (with the excep-
tion of the internal textx and texty coordinates, which are not updated), but no text out-
put is actually generated. This can be used for size calculations and possibly trying dif-
ferent font sizes for fitting some amount of text into a given box by varying the font
size. Otherwise feature must be empty.

Returns The number of characters which could not be processed since the text didn’t completely
fit into the column. If the text did actually fit, it returns 0. Since no formatting is per-
formed if width = 0 and height = 0, the function always returns 0 in this case.

Details The current font must have been set before calling this function. The current values of
font, font size, horizontal spacing, and leading are used for the text, but the word spac-
ing is ignored. The current text position is moved to the end of the generated text.

Scope page, pattern, template; this function cannot be used with CID fonts or ebcdic encoding.

Params See Table 4.7.

See also Restrictions of this functions are listed in Section 3.3.10, »Text Metrics, Text Variations,
and Text Box Formatting«.

float PDF_stringwidth(PDF *p, const char *text, int font, float size)
float PDF_stringwidth2(PDF *p, const char *text, int len, int font, float size)

Return the width of text in an arbitrary font.

text The text for which the width will be queried.

len (Only for PDF_stringwidth2().) Length of text (in bytes) for strings which may con-
tain null characters. If len = 0 a null-terminated string is assumed.

font A font handle returned by PDF_findfont(). The corresponding font must not be a
CID font. If font refers to a CID font, this function returns 0 regardless of the text and size
parameters.

size Text size, measured in units of the user coordinate system.

Details This function returns the width of text in an arbitrary font which has been selected with
PDF_findfont(), and the given size. The width calculation takes the current values of the
following text parameters into account: horizontal scaling, character spacing, and word
spacing.

Scope page, pattern, template, path, document

Params See Table 4.7.

Bindings C and C++: For PDF_stringwidth() text must not contain null characters, since text is as-
sumed to be null-terminated; use PDF_stringwidth2() for strings which may contain null
characters.

98 Chapter 4: PDFlib and PDI API Reference

Other bindings: PDF_stringwidth2() is not available since arbitrary string contents can be
supplied with PDF_stringwidth().

4.4 Graphics Functions
4.4.1 Graphics State Functions

All graphics state parameters are restored to their default values at the beginning of a
page. The default values are documented in the respective function descriptions. Func-
tions related to the text state are listed in Section 4.3, »Text Functions«.

Note None of the graphics state functions must be used during path scope (see Section 3.2, »Page De-
scriptions«).

void PDF_setdash(PDF *p, float b, float w)

Set the current dash pattern.

b, w The number of alternating black and white units. b and w must be non-negative
numbers.

Details In order to produce a solid line, set b = w = 0. The dash parameter is set to solid at the be-
ginning of each page.

Scope page, pattern, template

void PDF_setpolydash(PDF *p, float *darray, int length)

Set a more complicated dash pattern defined by an array.

darray An array which contains alternating values for black and white dash lengths.
The array values must be non-negative, and not all zero. The array values will be cycli-
cally reused until the complete path is stroked.

length The number of elements in the dash array.

Details In order to produce a solid line, choose length = 0 and darray = NULL or an empty array.
The array length must be less than or equal to 8; otherwise the array will be truncated.
The dash parameter is set to a solid line at the beginning of each page.

Scope page, pattern, template

Bindings C and C++: The length parameter is required.

Other bindings: Other language bindings simply supply an array as argument, and the
language wrapper will automatically determine its length.

void PDF_setflat(PDF *p, float flatness)

Set the flatness parameter.

flatness A positive number which describes the maximum distance (in device pixels)
between the path and an approximation constructed from straight line segments.

4.4 Graphics Functions 99

Details The flatness parameter is set to the default value of 1 at the beginning of each page.

Scope page, pattern, template

void PDF_setlinejoin(PDF *p, int linejoin)

Set the linejoin parameter.

linejoin Specifies the shape at the corners of paths that are stroked, see Table 4.8.

Details The linejoin parameter is set to the default value of 0 at the beginning of each page.

Scope page, pattern, template

void PDF_setlinecap(PDF *p, int linecap)

Set the linecap parameter.

linecap Controls the shape at the end of a path with respect to stroking, see Table 4.9.

Details The linecap parameter is set to the default value of 0 at the beginning of each page.

Scope page, pattern, template

Table 4.8. Values of the linejoin parameter

value description (from the PDF reference) examples
0 Miter joins: the outer edges of the strokes for the two segments are

continued until they meet. If the extension projects too far, as determined
by the miter limit, a bevel join is used instead.

1 Round joins: a circular arc with a diameter equal to the line width is drawn
around the point where the segments meet and filled in, producing a
rounded corner.

2 Bevel joins: the two path segments are drawn with butt end caps (see the
discussion of linecap parameter), and the resulting notch beyond the ends
of the segments is filled in with a triangle.

Table 4.9. Values of the linecap parameter

value description (from the PDF reference) examples
0 Butt end caps: the stroke is squared off at the endpoint of the path.

1 Round end caps: a semicircular arc with a diameter equal to the line width
is drawn around the endpoint and filled in.

2 Projecting square end caps: the stroke extends beyond the end of the line
by a distance which is half the line width and is squared off.

100 Chapter 4: PDFlib and PDI API Reference

void PDF_setmiterlimit(PDF *p, float miter)

Set the miter limit.

miter A value greater than or equal to 1 which controls
the spike produced by miter joins.

Details If the linejoin parameter is set to 0 (miter join), two line
segments joining at a small angle will result in a sharp
spike. This spike will be replaced by a straight end (i.e., the
miter join will be changed to a bevel join) when the ratio of
the miter length and the line width exceeds the miter limit. The miter limit is set to the
default value of 10 at the beginning of each page. This corresponds to an angle of rough-
ly 11.5 degrees.

Scope page, pattern, template

void PDF_setlinewidth(PDF *p, float width)

Set the current line width.

width The line width in units of the current user coordinate system.

Details The width parameter is set to the default value of 1 at the beginning of each page.

Scope page, pattern, template

void PDF_initgraphics(PDF *p)

Reset all color and graphics state parameters to their defaults.

Details The color, linewidth, linecap, linejoin, miterlimit, dash parameter, and the current
transformation matrix (but not the text state parameters) are reset to their respective
defaults. The current clipping path is not affected.

This function may be useful in situations where the program flow doesn’t allow for
easy use of PDF_save()/PDF_restore(), or for preparing the graphics state for a subse-
quent template or imported PDF.

Scope page, pattern, template

4.4.2 Saving and Restoring Graphics States

void PDF_save(PDF *p)

Save the current graphics state.

Details The graphics state contains parameters that control all types of graphics objects. Saving
the graphics state is not required by PDF; it is only necessary if the application wishes to
return to some specific graphics state later (e.g., a custom coordinate system) without
setting all relevant parameters explicitly again. The following items are subject to save/
restore:

Miter
length

Line width

4.4 Graphics Functions 101

> graphics parameters: clipping path, coordinate system, current point, flatness, line
cap style, dash pattern, line join style, line width, miter limit;

> color parameters: fill and stroke colors;
> text position and other text-related parameters, see list below;
> some PDFlib parameters, see list below.

Pairs of PDF_save() and PDF_restore() may be nested. Although the PDF specification
doesn’t limit the nesting level of save/restore pairs, applications must keep the nesting
level below 10 in order to avoid printing problems caused by restrictions in the Post-
Script output produced by PDF viewers, and to allow for additional save levels required
by PDFlib internally.

Scope page, pattern, template; must always be paired with a matching PDF_restore() call. PDF_
save() and PDF_restore() calls must be balanced on each page, pattern, and template.

Params The following parameters are subject to save/restore: charspacing, wordspacing,
horizscaling, leading, font, fontsize, textrendering, textrise;

The following parameters are not subject to save/restore: fillrule, underline, overline,
strikeout.

void PDF_restore(PDF *p)

Restore the most recently saved graphics state.

Details The corresponding graphics state must have been saved on the same page, pattern, or
template.

Scope page, pattern, template; must always be paired with a matching PDF_save() call. PDF_
save() and PDF_restore() calls must be balanced on each page, pattern, and template.

4.4.3 Coordinate System Transformation Functions
All transformation functions (PDF_translate(), PDF_scale(), PDF_rotate(), PDF_skew(),
PDF_concat(), PDF_setmatrix(), and PDF_initgraphics()) change the coordinate system
used for drawing subsequent objects. They do not affect existing objects on the page at
all.

void PDF_translate(PDF *p, float tx, float ty)

Translate the origin of the coordinate system.

tx, ty The new origin of the coordinate system is the point (tx, ty), measured in the old
coordinate system.

Scope page, pattern, template

void PDF_scale(PDF *p, float sx, float sy)

Scale the coordinate system.

sx, sy Scaling factors in x and y direction.

102 Chapter 4: PDFlib and PDI API Reference

Details This function scales the coordinate system by sx and sy. It may also be used for achiev-
ing a reflection (mirroring) by using a negative scaling factor. One unit in the x direction
in the new coordinate system equals sx units in the x direction in the old coordinate sys-
tem; analogous for y coordinates.

Scope page, pattern, template

void PDF_rotate(PDF *p, float phi)

Rotate the user coordinate system.

phi The rotation angle in degrees.

Details Angles are measured counterclockwise from the positive x axis of the current coordi-
nate system. The new coordinate axes result from rotating the old coordinate axes by
phi degrees.

Scope page, pattern, template

void PDF_skew(PDF *p, float alpha, float beta)

Skew the coordinate system.

alpha, beta Skewing angles in x and y direction in degrees.

Details Skewing (or shearing) distorts the coordinate system by the given angles in x and y di-
rection. alpha is measured counterclockwise from the positive x axis of the current coor-
dinate system, beta is measured clockwise from the positive y axis. Both angles must be
in the range -360˚ < alpha, beta < 360˚, and must be different from -270˚, -90˚, 90˚, and
270˚.

Scope page, pattern, template

void PDF_concat(PDF *p, float a, float b, float c, float d, float e, float f)

Concatenate a matrix to the current transformation matrix.

a, b, c, d, e, f Elements of a transformation matrix. The six floating point values make
up a matrix in the same way as in PostScript and PDF (see references). In order to avoid
degenerate transformations, a*d must not be equal to b*c.

Details This function concatenates a matrix to the current transformation matrix (CTM) for
text and graphics. It allows for the most general form of transformations. Unless you
are familiar with the use of transformation matrices, the use of PDF_translate(), PDF_
scale(), PDF_rotate(), and PDF_skew() is suggested instead of this function. The CTM is re-
set to the identity matrix [1, 0, 0, 1, 0, 0] at the beginning of each page.

Scope page, pattern, template

4.4 Graphics Functions 103

void PDF_setmatrix(PDF *p, float a, float b, float c, float d, float e, float f)

Explicitly set the current transformation matrix.

a, b, c, d, e, f See PDF_concat().

Details This function is similar to PDF_concat(). However, it disposes of the current transforma-
tion matrix, and completely replaces it with a new matrix.

Scope page, pattern, template

4.4.4 Path Construction
Table 4.10 lists relevant parameters and values for this section.

Note Make sure to call one of the functions in Section 4.4.5, »Path Painting and Clipping« after using
the functions in this section, or the constructed path will have no effect, and subsequent oper-
ations may raise a PDFlib exception.

void PDF_moveto(PDF *p, float x, float y)

Set the current point.

x, y The coordinates of the new current point.

Details The current point is set to the default value of undefined at the beginning of each page.
The current points for graphics and the current text position are maintained separately.

Scope page, pattern, template, path; this function starts path scope.

Params currentx, currenty

void PDF_lineto(PDF *p, float x, float y)

Draw a line from the current point to another point.

x, y The coordinates of the second endpoint of the line.

Details This function adds a straight line from the current point to (x, y) to the current path. The
current point must be set before using this function. The point (x, y) becomes the new
current point.

The line will be centered around the »ideal« line, i.e. half of the linewidth (as deter-
mined by the value of the linewidth parameter) will be painted on each side of the line
connecting both endpoints. The behavior at the endpoints is determined by the value of
the linecap parameter.

Scope path

Table 4.10. Parameters and values for the path segment functions (see Section 4.2.3, »Parameter
Handling«)

function key explanation
get_value currentx

currenty
The x or y coordinate (in units of the current coordinate system),
respectively, of the current point. Scope: page, pattern, template, path

104 Chapter 4: PDFlib and PDI API Reference

Params currentx, currenty

void PDF_curveto(PDF *p, float x1, float y1, float x2, float y2, float x3, float y3)

Draw a Bézier curve from the current point, using three more control points.

x1, y1, x2, y2, x3, y3 The coordinates of three control points.

Details A Bézier curve is added to the current path from the current point to (x3, y3), using (x1, y1)
and (x2, y2) as control points. The current point must be set before using this function.
The endpoint of the curve becomes the new current point.

Scope path

Params currentx, currenty

void PDF_circle(PDF *p, float x, float y, float r)

Draw a circle.

x, y The coordinates of the center of the circle.

r The radius of the circle.

Details This function adds a circle to the current path as a complete subpath. The point (x + r, y)
becomes the new current point. The resulting shape will be circular in user coordinates.
If the coordinate system has been scaled differently in x and y directions, the resulting
curve will be elliptical.

Scope page, pattern, template, path; this function starts path scope.

Params currentx, currenty

void PDF_arc(PDF *p, float x, float y, float r, float alpha, float beta)

Draw a counterclockwise circular arc segment.

x, y The coordinates of the center of the circular arc segment.

r The radius of the circular arc segment. r must be nonnegative.

alpha, beta The start and end angles of the circular arc segment in degrees.

Details This function adds a counterclockwise circular arc segment to the current path, extend-
ing from alpha to beta degrees. For both PDF_arc() and PDF_arcn(), angles are measured
counterclockwise from the positive x axis of the current coordinate system. If there is a
current point an additional straight line is drawn from the current point to the starting
point of the arc. The endpoint of the arc becomes the new current point.

The arc segment will be circular in user coordinates. If the coordinate system has
been scaled differently in x and y directions the resulting curve will be elliptical.

Scope page, pattern, template, path; this function starts path scope.

Params currentx, currenty

4.4 Graphics Functions 105

void PDF_arcn(PDF *p, float x, float y, float r, float alpha, float beta)

Like PDF_arc(), but draws a clockwise circular arc segment.

Details Except for the drawing direction, this function behave exactly like PDF_arc(). In particu-
lar, the angles are still measured counterclockwise from the positive x axis.

void PDF_rect(PDF *p, float x, float y, float width, float height)

Draw a rectangle.

x, y The coordinates of the lower left corner of the rectangle.

width, height The size of the rectangle.

Details This function adds a rectangle to the current path as a complete subpath. Setting the
current point is not required before using this function. The point (x, y) becomes the
new current point. The lines will be centered around the »ideal« line, i.e. half of the line-
width (as determined by the value of the linewidth parameter) will be painted on each
side of the line connecting the respective endpoints.

Scope page, pattern, template, path; this function starts path scope.

Params currentx, currenty

void PDF_closepath(PDF *p)

Close the current path.

Details This function closes the current subpath, i.e., adds a line from the current point to the
starting point of the subpath.

Scope path

Params currentx, currenty

4.4.5 Path Painting and Clipping
Table 4.11 lists relevant parameters and values for this section.

Note Most functions in this section clear the path, and leave the current point undefined. Subse-
quent drawing operations must explicitly set the current point (e.g., using PDF_moveto()) after
one of these functions has been called.

Table 4.11. Parameters and values for the path painting and clipping functions (see Section 4.2.3,
»Parameter Handling«)

function key explanation
set_parameter fillrule Set the current fill rule to winding or evenodd. The fill rule is used by PDF

viewers to determine the interior of shapes for the purpose of filling or
clipping. Since both algorithms yield the same result for simple shapes,
most applications won’t have to change the fill rule. The fill rule is reset to
the default of winding at the beginning of each page. Scope: page,
pattern, template.

106 Chapter 4: PDFlib and PDI API Reference

void PDF_stroke(PDF *p)

Stroke the path and clear it.

Details This function strokes (draws) the current path with the current line width and the cur-
rent stroke color.

Scope path; this function terminates path scope.

void PDF_closepath_stroke(PDF *p)

Close the path, and stroke it.

Details This function closes the current subpath (adds a straight line segment from the current
point to the starting point of the path), and strokes the complete current path with the
current line width and the current stroke color.

Scope path; this function terminates path scope.

void PDF_fill(PDF *p)

Fill the interior of the path with the current fill color.

Details This function fills the interior of the current path with the current fill color. The interior
of the path is determined by one of two algorithms (see the fillrule parameter). Open
paths are implicitly closed before being filled.

Scope path; this function terminates path scope.

Params fillrule

void PDF_fill_stroke(PDF *p)

Fill and stroke the path with the current fill and stroke color.

Details This function fills and strokes the current path with the current fill and stroke color, re-
spectively.

Scope path; this function terminates path scope.

Params fillrule

void PDF_closepath_fill_stroke(PDF *p)

Close the path, fill, and stroke it.

Details This function closes the current subpath (adds a straight line segment from the current
point to the starting point of the path), and fills and strokes the complete current path.

Scope path; this function terminates path scope.

Params fillrule

4.5 Color Functions 107

void PDF_clip(PDF *p)

Use the current path as clipping path, and terminate the path.

Details This function uses the intersection of the current path and the current clipping path as
the clipping path for subsequent operations. The clipping path is set to the default val-
ue of the page size at the beginning of each page. The clipping path is subject to PDF_
save()/PDF_restore(). It can only be enlarged by means of PDF_save()/PDF_restore().

Scope path; this function terminates path scope.

void PDF_endpath(PDF *p)

End the current path without filling or stroking it.

Details This function doesn’t have any visible effect on the page. It is mainly useful for ending
path scope after PDF_clip(), and generates an invisible path on the page.

Scope path; this function terminates path scope.

4.5 Color Functions

void PDF_setcolor(PDF *p,
const char *type, const char *colorspace, float c1, float c2, float c3, float c4)

Set the current color space and color.

type One of stroke, fill, or both to specify that the color is set for filling, stroking, or both
filling and stroking.

colorspace One of gray, rgb, cmyk, spot, or pattern to specify the color space.

c1, c2, c3, c4 Color components for the chosen color space:
> If the colorspace is gray, c1 specifies a gray value;
> If the colorspace is rgb, c1, c2, c3 specify red, green, and blue values;
> If the colorspace is cmyk, c1, c2, c3, c4 specify cyan, magenta, yellow, and black values;
> If colorspace is spot, c1 specifies a spot color handle returned by PDF_makespotcolor(),

and c2 specifies a tint value between 0 and 1;
> If colorspace is pattern, c1 specifies a pattern handle returned by PDF_begin_pattern().

Details All color values for the gray, rgb, and cmyk color spaces and the tint value for the spot col-
or space must be numbers in the inclusive range 0–1. Unused parameters should be set
to 0.

Grayscale, RGB values and spot color tints are interpreted according to additive color
mixture, i.e., 0 means no color and 1 means full intensity. Therefore, a gray value of 0
and RGB values with (r, g, b) = (0, 0, 0) mean black; a gray value of 1 and RGB values with
(r, g, b) = (1, 1, 1) mean white. CMYK values, however, are interpreted according to subtrac-
tive color mixture, i.e., (c, m, y, k) = (0, 0, 0, 0) means white and (c, m, y, k) = (0, 0, 0, 1) means
black. Color values in the range 0–255 must be scaled to the range 0–1 by dividing by 255.

108 Chapter 4: PDFlib and PDI API Reference

The fill and stroke color values for the gray, rgb, and cmyk color spaces are set to a de-
fault value of black at the beginning of each page. There are no defaults for spot and pat-
tern colors.

Scope page, pattern (only if the pattern’s paint type is 1), template, document; a pattern color
can not be used within its own definition. Setting the color in document scope may be
useful for defining spot colors with PDF_makespotcolor().

int PDF_makespotcolor(PDF *p, const char *spotname, int len)

Make a named spot color from the current fill color.

spotname An arbitrary name for the spot color to be defined. This name may contain
arbitrary characters, but is restricted to a maximum length of 126 bytes. On EBCDIC sys-
tems PDFlib will automatically convert it from EBCDIC to PDFDocEncoding.

len The length of spotname in bytes. If len = 0, spotname is assumed to be null-termi-
nated. This parameter is only required for C and C++.

Returns A color handle which can be used in subsequent calls to PDF_setcolor() throughout the
document. Spot color handles can be reused across all pages, but not across documents.
There is no limit for the number of spot colors in a document.

Details The (CMYK or other) color values of the current fill color will only be used for screen pre-
view and low-end printing. High-end printing (or producing color separations) will use
the supplied spot color name instead of the CMYK values. Note that you will need some
additional software in order to produce color separations from PDF.

If spotname has already been used in a previous call to PDF_makespotcolor(), the re-
turn value will be the same as in the earlier call, and will not reflect the current color.

The special spot color name All can be used to apply color to all color separations,
which is useful for painting registration marks. A spot color name of None will produce
no visible output on any color separation.

Scope page, pattern, template, document; the current fill color must not be a spot color or pat-
tern;

Bindings C, C++: the len parameter is required, but can be 0 for null-terminated strings.
Other bindings do not require the len parameter but simply supply a string argument.

int PDF_begin_pattern(PDF *p,
float width, float height, float xstep, float ystep, int painttype)

Start a pattern definition.

width, height The dimensions of the pattern’s bounding box in points.

xstep, ystep The offsets when repeatedly placing the pattern to stroke or fill some ob-
ject. Most applications will set these to the pattern width and height, respectively.

painttype If painttype is 1 the pattern must contain its own color specification which
will be applied when the pattern is used; if painttype is 2 the pattern must not contain
any color specification but instead the current fill or stroke color will be applied when
the pattern is used for filling or stroking.

4.6 Image Functions 109

Returns A pattern handle that can be used in subsequent calls to PDF_setcolor() during the en-
closing document scope.

Details Hypertext functions and functions for opening images must not be used during a pat-
tern definition, but all text, graphics, and color functions (with the exception of the pat-
tern which is in the process of being defined) can be used.

Scope document; this function starts pattern scope, and must always be paired with a matching
PDF_end_pattern() call.

void PDF_end_pattern(PDF *p)

Finish a pattern definition.

Scope pattern; this function terminates pattern scope, and must always be paired with a
matching PDF_begin_pattern() call.

void PDF_setgray_fill(PDF *p, float g)
void PDF_setgray_stroke(PDF *p, float g)
void PDF_setgray(PDF *p, float g)

Deprecated, use PDF_setcolor(p, type, "gray", g, 0, 0, 0) with a type parameter of fill, stroke,
or both instead.

void PDF_setrgbcolor_fill(PDF *p, float red, float green, float blue)
void PDF_setrgbcolor_stroke(PDF *p, float red, float green, float blue)
void PDF_setrgbcolor(PDF *p, float red, float green, float blue)

Deprecated, use PDF_setcolor(p, type, "rgb", red, green, blue, 0) with a type parameter of fill,
stroke, or both instead.

4.6 Image Functions
The functions for opening images described below can be called within or outside of
page descriptions. Opening images outside a PDF_begin_page() / PDF_end_page() con-
text actually offers slight output size advantages.

Table 4.12 lists relevant parameters and values for this section.

int PDF_open_image_file(PDF *p,
const char *type, const char *filename, const char *stringparam, int intparam)

Open an image file.

type Specifies the format type of the image: png, gif, jpeg, or tiff (see Section 3.4.1, »Sup-
ported Image File Formats«). Case is significant for all parameters.

filename The name of the image file to be opened.

stringparam, intparam The stringparam and intparam parameters are used for addi-
tional image attributes according to Table 4.13. If stringparam is unused, it must be an
empty string, and intparam must be 0.

110 Chapter 4: PDFlib and PDI API Reference

Returns An image handle which can be used in subsequent image-related calls. The return value
must be checked for -1 (in PHP: 0) which signals an error. In order to get more detailed
information about the nature of an image-related problem (wrong image file name, un-
supported format, bad image data, etc.), set the imagewarning parameter to true (see Ta-
ble 4.12). The returned image handle can not be reused across multiple PDF documents.

Details This function opens and analyzes a raster graphics file in one of the supported file for-
mats as determined by the type parameter. PDFlib will open the image file with the giv-
en name, process the contents, and close it before returning from this call. Although im-
ages can be placed multiply within a document (see PDF_place_image()), the actual
image file will not be kept open after this call.

Scope document, page; must always be paired with a matching PDF_close_image() call.

Params imagewidth, imageheight, resx, resy, imagewarning

Table 4.12. Parameters and values for the image functions (see Section 4.2.3, »Parameter Handling«)

function key explanation
get_value imagewidth

imageheight
Get the width or height, respectively, of an image in pixels. The modifier is the
integer handle of the selected image. Scope: page, pattern, template, document,
path.

get_value resx
resy

Get the horizontal or vertical resolution of an image, respectively. The modifier is
the integer handle of the selected image. Scope: page, pattern, template,
document, path.

If the value is positive, the return value is the image resolution in pixels per inch
(dpi). If the return value is negative, resx and resy can be used to find the aspect
ratio of non-square pixels, but don’t have any absolute meaning. If the return
value is zero, the resolution of the image is unknown.

set_parameter image-
warning

This parameter can be used in order to obtain more detailed information about
why an image couldn’t be opened successfully with PDF_open_image_file() or
PDF_open_CCITT(). Scope: any.
true Raise a Nonfatal exception when the image function fails, and return -1

(in PHP: 0). The message supplied with the exception may be useful for
debugging.

false Do not raise an exception when the image function fails. Instead,
the function simply returns -1 (in PHP: 0) on error. This is the default.

Table 4.13. The stringparam and intparam parameters of PDF_open_image_file()

stringparam explanation and possible intparam values
mask Create a mask from a 1-bit image. See Section 3.4.5, »Image Masks and Transparency« for details

and a list of supported image file formats. There are two uses for masks (the intparam parameter
is ignored in this case, and must be 0):
Mask another image: the returned image handle may be used in subsequent calls for opening
another image and can be supplied for the »masked« parameter.
Place a colorized transparent image: treat the 0-bit pixels in the image as transparent, and
colorize the 1-bit pixels with the current fill color.

masked Use the image descriptor given in intparam as a mask for this image. The intparam parameter is
an image handle which has been retrieved with a previous call to PDF_open_image() with the
»mask« parameter, and has not yet been closed.

ignoremask Ignore any transparency information which may be present in the image file.
invert Invert black and white for 1-bit TIFF images. This is mainly intended as a workaround for certain

TIFF images which are interpreted differently by different applications.

4.6 Image Functions 111

int PDF_open_CCITT(PDF *p,
const char *filename, int width, int height, int BitReverse, int K, int BlackIs1)

Open a raw CCITT image.

filename The name of the CCITT file to be opened.

width, height The dimensions of the image in pixels.

BitReverse If 1, do a bitwise reversal of all bytes in the compressed data.

K CCITT compression parameter for encoding scheme selection.
> -1 indicates G4 encoding
> 0 indicates one-dimensional G3 encoding (G3-1D)
> 1 indicates mixed one- and two-dimensional encoding (G3, 2-D) as supported by PDF

BlackIs1 If this parameter has the value 1, 1-bits are interpreted as black and 0-bits as
white. Most CCITT images don't use such a black-and-white reversal, i.e., most images
use BlackIs1 = 0.

Returns An image handle which may be used in subsequent image-related calls if not -1 (in PHP:
0). Since PDFlib is unable to analyze CCITT images, all relevant image parameters have
to be passed to PDF_open_CCITT() by the client.

Details This function opens an image file with raw CCITT G3 or G4 compressed bitmap data
(this is different from a TIFF file which contains CCITT-compressed image data!).

Scope document, page; must always be paired with a matching PDF_close_image() call.

Params imagewidth, imageheight, resx, resy, imagewarning

int PDF_open_image(PDF *p, const char *type, const char *source, const char *data,
long length, int width, int height, int components, int bpc, const char *params)

Use image data from a variety of data sources.

type Specifies the kind of image data or compression: jpeg, ccitt, or raw (see Section
3.4.1, »Supported Image File Formats«).

source, data, length The source parameter denotes where the image data comes from,
and can attain the values fileref, url, or memory (see Section 3.4.4, »Memory Images and
External Image References«). The relationship among the source, data, and length pa-
rameters is explained in Table 4.14. The data parameter has binary data type according
to Table 4.1.

width, height The dimensions of the image in pixels.

page Extract the image with the number given in intparam from a multi-page file. The first image has
the number 1. This is only supported for multi-image TIFF files.

colorize Colorize the image with the spot color handle provided in intparam, which must have been
retrieved with PDF_makespotcolor(). The image must be a grayscale image with 1, 2, 4, or 8 bits
color depth in the GIF, PNG, JPEG, or TIFF format.

Table 4.13. The stringparam and intparam parameters of PDF_open_image_file()

stringparam explanation and possible intparam values

112 Chapter 4: PDFlib and PDI API Reference

components The number of color components must be 1, 3, or 4 corresponding to
grayscale, RGB, or CMYK image data.

bpc The number of bits per component must be 1, 2, 4, or 8. bpc must be 8 if type is jpeg,
and 1 if type is ccitt.

params If components = 1 and bpc = 1, params may contain mask in order to use this im-
age as an image mask. Alternatively, additional CCITT parameters can be supplied (see
below).

Returns An image handle which may be used in subsequent image-related calls if not -1 (in
PHP: 0).

Details This versatile interface can be used to work with image data in several formats and from
several data sources. Unlike PDF_open_image_file() which analyzes an image file, the
user must supply the length, width, height, components, and bpc parameters. PDF_open_
image() does not analyze the image data, and the user is responsible for supplying pa-
rameters which actually match the image properties. Otherwise corrupt PDF output
may be generated, and Acrobat may respond with the message Insufficient data for an
Image.

If type is raw, length must be equal to [width x components x bpc / 8] x height bytes,
with the bracketed term adjusted upwards to the next integer, and this exact amount of
data must be supplied. The image samples are expected in the standard PostScript/PDF
ordering, i.e., top to bottom and left to right (assuming no coordinate transformations
have been applied). The polarity of the pixel values is as discussed in Section 3.2.3,
»Paths and Color«. Even if bpc is not 8, each pixel row begins on a byte boundary, and
color values must be packed from left to right within a byte. Image samples are always
interleaved, i.e., all color values for the first pixel are supplied first, followed by all color
values for the second pixel, and so on.

If type is ccitt, CCITT-compressed image data is expected. In this case, params is exam-
ined. For CCITT images two parameters as described for PDF_open_CCITT() can be sup-
plied in the params string as follows:

/K -1 /BlackIs1 true

Table 4.14. Values of the source, data, and length parameters of PDF_open_image()

source data length
fileref1

1. Not supported in Acrobat 3 compatibility mode.

string2 with a platform-independent file name (see [1]). On EBCDIC
systems PDFlib will automatically convert it from EBCDIC to
PDFDocEncoding.

2. data is not a string in Java and C++, which makes it a little bit clumsy to pass filenames or URLs.

unused, should be 0

url1 string2 with an image URL conforming to RFC 17383. The URL will not be
resolved by PDFlib, but by Acrobat when the PDF is opened (see Section
3.4.4, »Memory Images and External Image References«). On EBCDIC
systems PDFlib will automatically convert it from EBCDIC to
PDFDocEncoding. This experimental feature is not recommended for
production use.

3. The URL must not contain any additional parameter, query string, access scheme, network login, or fragment identifier.

unused, should be 0

memory Binary bytes containing image data; the image data is compressed
according to the type parameter. Exactly »length« bytes must be supplied.

length of
(compressed) image
data in bytes.

4.6 Image Functions 113

Supported values for /K are -1, 0, or 1, the default value is 0. Supported values for /BlackIs1
are true and false; the default value is false. The default values will be used if an empty
params string is supplied. BitReverse cannot be supplied in this string. Instead, a special
notion is used: if length is negative, the image data will be reversed.

If params is not used, it must be empty. The client is responsible for the memory
pointed to by the data argument. The memory may be freed by the client immediately
after this call.

Don’t use Photoshop-generated CMYK JPEG images with this function since these
will appear in the PDF with inverted colors.

Scope document, page; must always be paired with a matching PDF_close_image() call.

Params imagewidth, imageheight, resx, resy, imagewarning

void PDF_close_image(PDF *p, int image)

Close an image.

image A valid image handle retrieved with one of the PDF_open_image*() functions.

Details This function only affects PDFlib’s associated internal image structure. If the image has
been opened from file, the actual image file is not affected by this call since it has al-
ready been closed at the end of the corresponding PDF_open_image*() call. An image
handle cannot be used any more after it has been closed with this function, since it
breaks PDFlib’s internal association with the image. This function must not be called for
image handles which have been opened with PDF_open_pdi_page() (use PDF_close_pdi_
page() instead).

Scope document, page; must always be paired with a matching call to one of the PDF_open_
image_file(), PDF_open_CCITT(), PDF_open_image() functions.

void PDF_place_image(PDF *p, int image, float x, float y, float scale)

Place an image or template, with the lower left corner at (x, y), and scale it.

image A valid image handle retrieved with one of the PDF_open_image*() or PDF_
begin_template() functions.

x, y The coordinates in the user coordinate system where the lower left corner of the
placed image will be located.

scale The scaling factor which will be applied to the image in x and y direction.

Details See Section 3.4.2, »Code Fragments for Common Image Tasks« for more information on
scaling and dpi calculations, including non-uniform scaling (different scaling factors in
x and y dimensions).

Scope page, pattern, template; this function can be called an arbitrary number of times on
arbitrary pages, as long as the image handle has not been closed with PDF_close_image().

Params inheritgstate; It is strongly suggested to set this parameter to false; see Section 3.2.4,
»Templates« for details.

114 Chapter 4: PDFlib and PDI API Reference

int PDF_begin_template(PDF *p, float width, float height)

Start a template definition.

width, height The dimensions of the template’s bounding box in points.

Returns A template handle which can be used in subsequent image-related calls, especially PDF_
place_image(). There is no error return.

Details Hypertext functions and functions for opening images must not be used during a
template definition, but all text, graphics, and color functions can be used.

Scope document; this function starts template scope, and must always be paired with a
matching PDF_end_template() call.

void PDF_end_template(PDF *p)

Finish a template definition.

Scope template; this function terminates template scope, and must always be paired with a
matching PDF_begin_template() call.

4.7 PDF Import (PDI) Functions
Note All functions described in this chapter require the additional PDF import library (PDI) which is

not part of the PDFlib source code distribution. Please visit our Web site for more information
on obtaining PDI.

4.7.1 Document and Page

int PDF_open_pdi(PDF *p, const char *filename , const char *stringparam, int intparam)

Open an existing PDF document from file and prepare it for later use.

filename The name of the PDF file.

stringparam, intparam Reserved for later use; must currently be an empty string and
0, respectively.

Returns A document descriptor which can be used for processing individual pages of the docu-
ment or for querying document properties. A return value of -1 (in PHP: 0) indicates that
the PDF document couldn’t be opened. An arbitrary number of PDF documents can be

Table 4.15. Parameters for placing templates and PDF pages (see Section 4.2.3, »Parameter Handling«)

function key explanation
set_parameter
get_parameter

inheritgstate Controls the inheritance of the importing page’s and the template’s or imported
PDF page’s graphics state parameters. Scope: any.
true Graphics state parameters may be inherited from the importing page to

the template. This is the default.
false Graphics state parameters will never be inherited; the importing page

and the template are independent from each other.

4.7 PDF Import (PDI) Functions 115

opened simultaneously. The return value can be used until the end of the enclosing
document scope.

Details In order to get more detailed information about the nature of a PDF import-related
problem (wrong PDF file name, unsupported format, bad PDF data, etc.), set the
pdiwarning parameter to true.

Scope document, page

Params See Table 4.16 and Table 4.17.

void PDF_close_pdi(PDF *p, int doc)

Close all open PDI page handles, and close the input PDF document.

doc A valid PDF document handle retrieved with PDF_open_pdi*().

Details This function closes a PDF import document, and releases all resources related to the
document. All document pages which may be open are implicitly closed. The document
handle must not be used after this call. A PDF document should not be closed if more
pages are to be imported. Although you can open and close a PDF import document an
arbitrary number of times, doing so may result in unnecessary large PDF output files.

Scope document, page

Params See Table 4.16 and Table 4.17.

int PDF_open_pdi_page(PDF *p, int doc, int pagenumber, const char* pagelabel)

Prepare a page for later use with PDF_place_pdi_page().

doc A valid PDF document handle retrieved with PDF_open_pdi*().

pagenumber The number of the page to be opened. The first page has page number 1.

pagelabel Reserved; must currently be an empty string.

Returns A page descriptor which can be used for placing pages with PDF_place_image(). A return
value of -1 (in PHP: 0) indicates that the page couldn’t be opened. The return value can
be used until the end of the enclosing document scope.

Details In order to get more detailed information about a problem related to PDF import (un-
supported format, bad PDF data, etc.), set the pdiwarning parameter to true.

An arbitrary number of pages can be opened simultaneously. If the same page is
opened multiply, different handles will be returned, and each handle must be closed ex-
actly once. Opening the same page more than once is not recommended because the ac-
tual page data will be copied to the output document more than once.

Scope document, page

Params See Table 4.16 and Table 4.17.

See also PDF_place_pdi_page()

116 Chapter 4: PDFlib and PDI API Reference

void PDF_close_pdi_page(PDF *p, int page)

Close the page handle, and free all page-related resources.

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page().

Details This function closes the page associated with the page handle identified by page, and re-
leases all related resources. page must not be used after this call.

Scope document, page

Params See Table 4.16 and Table 4.17.

void PDF_place_pdi_page(PDF *p, int page, float x, float y, float sx, float sy)

Place a PDF page with the lower left corner at (x, y), and scale it.

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page(). The page handle must not have been closed.

x, y The coordinates in the user coordinate system where the lower left corner of the
placed page will be located.

sx, sy The horizontal and vertical scaling factors which will be applied to the page.

Details This function is similar to PDF_place_image(), but operates on imported PDF pages in-
stead. Another difference is that PDF_place_image() provides only a single scaling factor,
while this function provides separate scaling factors in x and y direction.

Scope page, pattern, template

Params See Table 4.15, Table 4.16 and Table 4.17.

4.7.2 Parameter Handling

float PDF_get_pdi_value(PDF *p, const char *key, int doc, int page, int index)

Get some PDI document parameter with numerical type.

key Specifies the name of the parameter to be retrieved, see Table 4.16 and Table 4.17.

doc A valid PDF document handle retrieved with PDF_open_pdi().

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page(). For keys which are not page-related page must be -1 (in PHP: 0).

index Currently unused, must be 0.

Returns The numerical value retrieved from the document.

Scope any

4.7 PDF Import (PDI) Functions 117

const char * PDF_get_pdi_parameter(
PDF *p, const char *key, int doc, int page, int index, int *len)

Get some PDI document parameter with string type.

key Specifies the name of the parameter to be retrieved, see Table 4.16 and Table 4.17.

doc A valid PDF document handle retrieved with PDF_open_pdi().

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page(). For keys which are not page-related page must be -1 (in PHP: 0).

index Currently unused, must be 0.

len A C-style pointer to an integer which will receive the length of the returned string
in bytes (for Unicode strings: including the BOM, but excluding the terminating double-
null). This parameter is only required for C and C++, and not allowed in other langguage
bindings.

Returns The string parameter retrieved from the document. Unicode info strings (/Info/<key>)
will be returned with initial BOM and terminating double-null. Currently PDFlib does
not construct a proper Unicode string object from document info keys containing Uni-
code text.

Details This function gets some string parameter related to an imported PDF documented, in
some cases further specified by page and index. Table 4.17 lists relevant parameter com-
binations.

Bindings C and C++: The len parameter must be supplied.

Other bindings: The len parameter must be omitted; instead, a string object of appropri-
ate length will be returned.

Scope any

Table 4.16. Page-related values for PDF import

function key explanation
get_pdi_value width

height
Get the width or height, respectively, of an imported page in
default units. Cropping and rotation will be taken into account.

get_pdi_value /Rotate page rotation in degrees (0, 90, 180, or 270)
get_pdi_value /CropBox,

/BleedBox,
/ArtBox,
/TrimBox

Query one of the box parameters of the page. The parameter
name must be followed by a slash ’/’ character and one of llx, lly,
urx, ury, for example: /CropBox/llx (see Section 3.2.2, »Page and
Coordinate Limits« for details). Note that these will not have the
/Rotate key applied, unlike the width and height values which
already reflect any rotation which may be applied to the page.

Table 4.17. Document-related parameters and values for PDF import. The page parameter must be -1 (in PHP:0).

function key explanation
get_parameter pdi Returns the string true if the PDI library is attached (and not

restricted to demo mode), and false otherwise. Scope: any, null1.
get_pdi_value /Root/Pages/Count total number of pages in the imported document
get_pdi_parameter filename name of the PDF file

118 Chapter 4: PDFlib and PDI API Reference

4.8 Hypertext Functions
4.8.1 Document Open Action and Open Mode

Table 4.18 lists relevant parameters and values for this section. These parameters can be
set at an arbitrary time before calling PDF_close().

get_pdi_parameter /Info/<key> Retrieves the string value of a key in the document info dictionary,
e.g., /Info/Title. No conversion will be applied to the string. If the
key cannot be found in the document an empty string will be
returned. However, if pdiwarning is set to true, an exception will
be thrown for a key that couldn’t be found.

get_pdi_value version PDF version number multiplied by 10, e.g. 13 for PDF 1.3
set_parameter pdiwarning This parameter can be used to obtain more detailed information

about why a PDF or page couldn’t be opened:
true Raise a nonfatal exception when the PDI function

fails. The information string supplied with the exception
may be useful in debugging import-related problems.

false Do not raise an exception when the PDI function fails.
Instead, the function returns -1 (in PHP: 0) on error. This

is default.
set_parameter pdistrict This parameter can be used to control PDI’s behavior with respect

to damaged PDF files:
true Raise a nonfatal exception for non-conforming PDFs

unless the warning parameter is set to false.
false Accept certain kinds of damaged PDFs. This is the

default.
set_parameter pdiusebox This parameter determines which of the Box entries of a page will

be used for determining an imported page’s size (default is crop):
media Use the MediaBox (which is always present)
crop Use the CropBox if present, else the MediaBox
bleed Use the BleedBox if present, else the CropBox
trim Use the TrimBox if present, else the CropBox
art Use the ArtBox if present, else the CropBox
The pdiusebox parameter must be set before calling PDF_open_
pdi_page().

1. May be called with a PDF * argument of NULL or 0.

Table 4.18. Parameters for document open action and open mode (see Section 4.2.3, »Parameter Handling«)

function key explanation
set_parameter openaction Set the open action, i.e., the zoom factor for the first page of the document.

Possible values are retain, fitpage, fitwidth, fitheight, fitbbox (see Table 4.25). The
default is retain. Scope: page, pattern, template, document.

set_parameter openmode Set the appearance when the document is opened. The default value is bookmarks
if the document contains any bookmarks, and otherwise none. Scope: page,
pattern, template, document.
none Neither bookmarks nor thumbnails are visible
bookmarks Open the document with bookmarks visible.
thumbnails Open document with thumbnails visible
fullscreen Open the document in fullscreen mode (does not work in browser).

Table 4.17. Document-related parameters and values for PDF import. The page parameter must be -1 (in PHP:0).

function key explanation

4.8 Hypertext Functions 119

4.8.2 Bookmarks
Table 4.19 lists relevant parameters for this section.

Note Adding bookmarks sets the open mode (see Section 4.8.1, »Document Open Action and Open
Mode«) to bookmarks unless another mode has explicitly been set.

int PDF_add_bookmark(PDF *p, const char *text, int parent, int open)

Add a nested bookmark under parent, or a new top-level bookmark.

text Contains the text of the bookmark. It may be encoded with PDFDocEncoding or
Unicode. The maximum length of text is 255 characters (PDFDocEncoding), or 126 Unicode
characters. However, a practical limit of 32 characters for text is advised.

parent If parent contains a valid bookmark handle returned by a previous call to PDF_
add_bookmark(), a new bookmark will be generated which is a subordinate of the given
parent. In this way, arbitrarily nested bookmarks can be generated. If parent = 0 a new
top-level bookmark will be generated.

open If 0, child bookmarks will not be visible. If open = 1, all children will be folded out.
The bookmark target will be viewed at the current bookmark zoom factor which can be
set via the bookmarkdest parameter (see Table 4.19).

Returns An identifier for the bookmark just generated. This identifier may be used as the parent
parameter in subsequent calls.

Details This function adds a PDF bookmark with the supplied text that points to the current
page. The zoom factor can be controlled with the bookmarkdest parameter.

Scope page

Params openmode, bookmarkdest

4.8.3 Document Information Fields

void PDF_set_info(PDF *p, const char *key, const char *value)

Fill document information field key with value.

key The key parameter must be encoded with PDFDocEncoding. key may be any of the
five standard information field names, or an arbitrarily named custom field (see Table
4.20). There is no limit for the number of custom fields. Regarding the use and seman-
tics of custom document information fields, PDFlib users are encouraged to take a look
at the Dublin Core Metadata element set.1

Table 4.19. Parameters for bookmarks (see Section 4.2.3, »Parameter Handling«)

function key explanation
set_parameter bookmark-

dest
Set the target zoom for subsequently generated bookmark. Possible values are
retain, fitpage, fitwidth, fitheight, fitbbox (see Table 4.25). This parameter can be
changed an arbitrary number of times. The default is retain.

1. See http://purl.org/DC

http://purl.org/DC

120 Chapter 4: PDFlib and PDI API Reference

value The string to which the key parameter will be set. It can be encoded with PDF-
DocEncoding or Unicode. Acrobat imposes a maximum length of value of 255 bytes.

Scope document, page

4.8.4 Page Transitions
PDF files may specify a page transition in order to achieve special effects which may be
useful for presentations or »slide shows«. In Acrobat, these effects cannot be set docu-
ment-specific or on a page-by-page basis, but only for the full screen mode. PDFlib, how-
ever, allows setting the page transition mode and duration for each page separately. Ta-
ble 4.21 lists relevant parameters and values for this section.

4.8.5 File Attachments

void PDF_attach_file(PDF *p, float llx, float lly, float urx, float ury, const char *filename,
const char *description, const char *author, const char *mimetype, const char *icon)

Add a file attachment annotation.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the an-
notation rectangle in default user space coordinates (not the possibly transformed user

Table 4.20. Values for the document information field key

key explanation
Subject Subject of the document
Title Title of the document
Creator Creator of the document
Author Author of the document
Keywords Keywords describing the contents of the document
Trapped Indicates whether trapping has been applied to the document. Allowed values are

True, False, and Unknown.
any name other than
CreationDate, Producer, and
ModDate

User-defined field. PDFlib supports an arbitrary number of fields. Names consist of
printable characters except the following: blank ’ ’, %, (,), <, >, [,], {, }, /, and #.

Table 4.21. Parameters and values for page transitions (see Section 4.2.3, »Parameter Handling«)

function key explanation
set_parameter transition Set the page transition effect for the current and subsequent pages until the

transition is changed again. The transition types below are supported. type may
also be empty to reset the transition effect. Default is replace. Scope: any.
split Two lines sweeping across the screen reveal the page
blinds Multiple lines sweeping across the screen reveal the page
box A box reveals the page
wipe A single line sweeping across the screen reveals the page
dissolve The old page dissolves to reveal the page
glitter The dissolve effect moves from one screen edge to another
replace The old page is simply replaced by the new page (default)

set_value duration Set the page display duration in seconds for the current page. Default is one
second. Scope: any

4.8 Hypertext Functions 121

coordinate system!). Acrobat will align the upper left corner of the icon at the upper left
corner of the specified rectangle.

filename The name of the file which will be attached to the PDF document.

description A string with some explanation of the attachment. It may be encoded in
PDFDocEncoding or Unicode. On EBCDIC systems PDFlib will automatically convert it
from EBCDIC to PDFDocEncoding.

author A string with the author’s name or function. It may be encoded in PDFDoc-
Encoding or Unicode. On EBCDIC systems PDFlib will automatically convert it from EB-
CDIC to PDFDocEncoding.

mimetype The MIME type of the file. It will be used by Acrobat for launching the ap-
propriate program when the file attachment annotation is activated. On EBCDIC sys-
tems PDFlib will automatically convert it from EBCDIC to PDFDocEncoding.

icon Controls the display of the unopened file attachment in Acrobat (see Table 4.22).

Details This function adds a file attachment annotation at the specified rectangle. PDF file at-
tachments are only supported in Acrobat 4 and above, and are therefore not supported
in PDFlib’s Acrobat 3 compatibility mode. Moreover, Acrobat Reader is unable to deal
with file attachments and will display a question mark instead. File attachments only
work in the full Acrobat software.

The color of the attachment icon can be controlled with PDF_set_border_color().

Scope page

4.8.6 Note Annotations
Note All annotation coordinates are different from the parameters of the PDF_rect() function. While

all annotation functions expect parameters for two corners directly, PDF_rect() expects the co-
ordinates of one corner, plus width and height values.

void PDF_add_note(PDF *p, float llx, float lly, float urx, float ury,
const char *contents, const char *title, const char *icon, int open)

Add a note annotation.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the
note rectangle in default user space coordinates (not the possibly transformed user co-
ordinate system!). Acrobat will align the upper left corner of the icon at the upper left
corner of the specified rectangle.

Table 4.22. Icon names for file attachments

icon name icon appearance icon name icon appearance

graph

pushpin

paperclip tag

122 Chapter 4: PDFlib and PDI API Reference

contents Text content of the note. It may be encoded with PDFDocEncoding or Uni-
code. The maximum length of contents is 65535 bytes. On EBCDIC systems PDFlib will au-
tomatically convert it from EBCDIC to PDFDocEncoding.

title Heading text of the note. It may be encoded with PDFDocEncoding or Unicode.
The maximum length of title is 255 characters (PDFDocEncoding), or 126 Unicode charac-
ters. However, a practical limit of 32 characters for title is advised. On EBCDIC systems
PDFlib will automatically convert it from EBCDIC to PDFDocEncoding.

icon Controls the display of the unopened note attachment in Acrobat (see Table 4.23).

open The annotation will be displayed in open state if open = 1, and closed if open = 0.

Details This function adds a note annotation at the specified rectangle. Different note icons are
only available in Acrobat 4, and are not supported in Acrobat 3 compatibility mode (the
icon parameter must be empty in this case). Acrobat 3 viewers (and apparently Unix
versions of Acrobat 4) will display the »note« type icon regardless of the supplied icon
parameter.

The color of the note icon can be controlled with PDF_set_border_color().

Scope page

4.8.7 Links
Table 4.24 lists relevant parameters for this section.

Note PDF doesn’t support links with shapes other than rectangles.

Table 4.23. Icon names for note annotations

icon name icon appearance icon name icon appearance

comment newparagraph

insert key

note help

paragraph

Table 4.24. Parameters for links (see Section 4.2.3, »Parameter Handling«)

function key explanation
set_parameter base Set the document’s base URL. This is useful when a document with relative Web

links to other documents is moved to a different location. Setting the base URL to
the »old« location makes sure that relative links will still work. Scope: page,
pattern, template, document.

4.8 Hypertext Functions 123

void PDF_add_pdflink(PDF *p, float llx, float lly, float urx, float ury,
const char *filename, int page, const char *dest)

Add a file link annotation (to a PDF target).

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the link
rectangle in default user space coordinates (not the possibly transformed user coordi-
nate system!).

filename The name of the target PDF file. On EBCDIC systems PDFlib will automatical-
ly convert it from EBCDIC to PDFDocEncoding.

page The physical page number of the target page.

dest The destination zoom. It can attain one of the values specified in Table 4.25.

Scope page

void PDF_add_locallink(PDF *p, float llx, float lly, float urx, float ury,
int page, const char *dest)

Add a link annotation to a target within the current PDF file.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the link
rectangle in default user space coordinates (not the possibly transformed user coordi-
nate system!).

page The physical page number of the target page. This may be a previously generat-
ed page, or a page in the same document that will be generated later (after the current
page). However, the application must make sure that the target page will actually be
generated; PDFlib will issue a warning message otherwise.

dest Specifies the destination zoom, which is one of the values specified in Table 4.25.

Scope page

void PDF_add_launchlink(PDF *p, float llx, float lly, float urx, float ury, const char *filename)

Add a launch annotation (to a target of arbitrary file type).

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the link
rectangle in default user space coordinates (not the possibly transformed user coordi-
nate system!).

Table 4.25. Values for the dest parameter of PDF_add_pdflink() and PDF_add_locallink(). The same values
are also used for the openaction (see Section 4.8.1, »Document Open Action and Open Mode«) and
bookmarkdest parameters (see Section 4.8.2, »Bookmarks«).

dest explanation
retain Retain the zoom factor which was in effect when the link was activated.
fitpage Fit the complete page to the window.
fitwidth Fit the page width to the window.
fitheight Fit the page height to the window.
fitbbox Fit the page’s bounding box (the smallest rectangle enclosing all objects) to the window.

124 Chapter 4: PDFlib and PDI API Reference

filename The name of the file which will be launched upon clicking the link. On
EBCDIC systems PDFlib will automatically convert it from EBCDIC to PDFDocEncoding.

Scope page

void PDF_add_weblink(PDF *p, float llx, float lly, float urx, float ury, const char *url)

Add a weblink annotation to a target URL on the Web.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the link
rectangle in default user space coordinates (not the possibly transformed user coordi-
nate system!).

url A Uniform Resource Identifier encoded in 7-bit ASCII specifying the link target. It
can point to an arbitrary (Web or local) resource. On EBCDIC systems PDFlib will auto-
matically convert it from EBCDIC to PDFDocEncoding.

Scope page

Params The textx/texty, currentx/currenty, and imagewidth/imageheight parameters may be
useful for retrieving positioning information for calculating the dimension of link
rectangles.

void PDF_set_border_style(PDF *p, const char *style, float width)

Set the border style for all kinds of links.

style Specifies the links border style, and must be one of solid or dashed.

width Specifies the links border width in points. If width = 0 the annotation borders
will be invisible.

Details The settings made by this function are used for all links until a new style is set. At the
beginning of a document the links border style is set to a default of a solid line with a
width of 1.

Scope document, page

void PDF_set_border_color(PDF *p, float red, float green, float blue)

Set the border color for links, notes, and file attachments (annotations).

red, green, blue The RGB color values for annotation borders.

Details The settings made by this function are used for all annotations until a new color is set.
At the beginning of a document the annotation border color is set to black (0, 0, 0).

Scope document, page

void PDF_set_border_dash(PDF *p, float b, float w)

Set the border dash style for all kinds of links.

b, w Specify the border dash style (see PDF_setdash()).

4.9 Page Size Formats 125

Details At the beginning of a document the links border dash style is set to a default of (3, 3).
However, this default will only be used when the border style is explicitly set to dashed.

Scope document, page

4.8.8 Thumbnails

void PDF_add_thumbnail(PDF *p, int image)

Add an existing image as thumbnail for the current page.

image A valid image handle retrieved with one of the PDF_open_image*() functions,
but not a handle to a PDF page or template.

Details This function adds the supplied image as thumbnail image for the current page. A
thumbnail image must adhere to the following restrictions:
> The image must be no larger than 106 x 106 pixels.
> The image must use the grayscale, RGB, or indexed RGB color space.
> Multi-strip TIFF images can not be used as thumbnails because thumbnails must be

constructed from a single PDF image object, and multi-strip TIFF images result in
multiple PDF image objects (see Section 3.4.1, »Supported Image File Formats«).

This function doesn’t generate thumbnail images for pages, but only offers a hook for
adding existing images as thumbnails. The actual thumbnail images must be generated
by the client or some other application. The client must ensure that color, height/width
ratio, and actual contents of a thumbnail match the corresponding page contents.

Since Acrobat 5 generates thumbnails on the fly (though not in the Browser), and
thumbnails increase the overall file size of the generated PDF, it is recommended not to
add thumbnails, but rely on client-side thumbnail generation instead.

Scope page; must only be called once per page. Not all pages need to have thumbnails attached
to them.

Params openmode

4.9 Page Size Formats
For the convenience of PDFlib users, Table 4.26 lists common standard page sizes1.

Table 4.26. Common standard page size dimensions in points

format width height format width height format width height
A0 2380 3368 A4 595 842 letter 612 792
A1 1684 2380 A5 421 595 legal 612 1008
A2 1190 1684 A6 297 421 ledger 1224 792
A3 842 1190 B5 501 709 11 x 17 792 1224

1. More information about ISO, Japanese, and U.S. standard formats can be found at the following URLs:
http://www.twics.com/~eds/paper/papersize.html, http://www.cl.cam.ac.uk/~mgk25/iso-paper.html

http://www.cl.cam.ac.uk/~mgk25/iso-paper.html
http://www.twics.com/~eds/paper/papersize.html

126 Chapter 4: PDFlib and PDI API Reference

<format>_width, <format>_height, where format is one of
a0, a1, a2, a3, a4, a5, a6, b5, letter, legal, ledger, p11x17;

These macro definitions provide page width and height values for the most common
page formats which may be used in calls to PDF_begin_page().

Bindings C and C++: macro definitions for these formats are available in pdflib.h

Other bindings may use the values provided in Table 4.26.

5.1 The »Aladdin Free Public License« 127

5 The PDFlib License
PDFlib is available under two separate licensing terms which are substantially different,
and meet the needs of different developer groups. Please take the time to read the short
summaries below in order to decide which one applies to your development.

5.1 The »Aladdin Free Public License«
This license applies to the main PDFlib source code package, but not to the ActiveX edi-
tion, any EBCDIC edition, any binaries, and the PDI library (all of which are only avail-
able under the terms of the commercial PDFlib license). The complete text of the license
agreement can be found in the file aladdin-license.pdf. In short and non-legal terms:
> you may develop free software with PDFlib, provided you make your source code

available
> you may develop software for your own use with PDFlib as long as you don’t sell it
> you may redistribute PDFlib non-commercially
> you may redistribute PDFlib on digital media for a fee if the complete contents of the

media are freely redistributable.

Note that only the text in the file aladdin-license.pdf is considered to completely describe
the licensing conditions.

5.2 The Commercial PDFlib License
A commercial PDFlib license is required for all uses of the software which are not explic-
itly covered by the Aladdin Free Public License, for example:
> applications which use the PDF import library (PDI)
> shipping a commercial product which contains PDFlib
> distributing (free or commercial) software based on PDFlib when the source code is

not made available

Different licensing options are available for PDFlib use on one or more servers, and for
redistributing PDFlib with your own products. We also offer maintenance and support
contracts. Licensing details and the PDFlib purchase order form can be found in the
PDFlib distribution. Please contact us if you are interested in obtaining a commercial
PDFlib license, or have any questions:

PDFlib GmbH
Tal 40, 80331 München, Germany
http://www.pdflib.com
phone +49 • 89 • 29 16 46 87
fax +49 • 89 • 29 16 46 86
Licensing contact: sales@pdflib.com
Support for PDFlib licensees: support@pdflib.com (include your license number)
For other inquiries check our mailing list at http://groups.yahoo.com/group/pdflib.

http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com
http://groups.yahoo.com/group/pdflib.

128 Chapter 6: References

6 References
[1] Adobe Systems Incorporated: PDF Reference, Third Edition: Version 1.4. Published by
Addison-Wesley 2001, ISBN 0-201-75839-3; also available as PDF from
http://partners.adobe.com/asn/developer/technotes.html

[2] Adobe Systems Incorporated: PostScript Language Reference Manual, third edition.
Published by Addison-Wesley 1999, ISBN 0-201-37922-8; also available as PDF from
http://partners.adobe.com/asn/developer/technotes.html

[3] The following book by the principal author of PDFlib is currently only available in
German. It discusses a variety of PostScript, PDF and font-related topics:

Thomas Merz, Olaf Drümmer: Die PostScript- & PDF-Bibel.
Zweite Auflage. ISBN 3-935320-01-9, PDFlib Edition 2002
PDFlib GmbH, 80331 München, Tal 40, fax +49 • 89 • 29 16 46 86
http://www.pdflib.com, books@pdflib.com

http://partners.adobe.com/asn/developer/technotes.html
http://partners.adobe.com/asn/developer/technotes.html
http://www.pdflib.com
mailto:books@pdflib.com

A Shared Libraries and DLLs 129

A Shared Libraries and DLLs
Most PDFlib language bindings require the use of shared libraries, also known as shared
objects or dynamic link libraries (DLLs). For your convenience we collected some general
information about shared libraries in this appendix.

Shared Libraries on Unix Systems

The many faces of shared libraries. Most problems with shared libraries are related to
the variety of methods invented by Unix vendors for implementing shared library sup-
port. In order to facilitate the use of shared libraries PDFlib leverages GNU libtool1. This
is a collection of macros and shell scripts for building and using shared libraries on Unix
systems. While libtool support is integrated in the PDFlib configuration, it is suggested
to take a look at libtool and the corresponding documentation.

Building shared libraries. Although we do not cover all details of shared libraries here,
the hints given below may be helpful for PDFlib users.
> On many systems a compiler flag (Linux: -fPIC) must be used for modules which are

intended to be linked into a shared library (position-independent code, or PIC).
> Most systems require a special linker flag for shared libraries (Linux: -shared).
> The naming conventions for shared libraries vary (Linux, Solaris, and many others:

.so, HP-UX: .sl, Mac OS X: .dylib)
> Some systems require a version number to be included in the shared library file

name, others at least tolerate it. Still others refuse to load libraries with version num-
bers in their names. The version number is often appended to the file name suffix
(Linux: lib<name>.so.5, BSDI: lib<name>.so5).

The PDFlib configure script and GNU libtool take care of all these issues by constructing
suitable Makefiles. In case of problems try to locate as much information as possible re-
garding the above issues, and compare with the generated Makefiles.

PDFlib’s configure mechanism will build static versions of the library on systems
where a shared library cannot be built. This implies that only the C and C++ language
bindings will be available.

Using shared libraries. Once you managed to correctly build your shared library, you
are not yet done – you must make sure that the run-time linker (which loads and runs
your program) can access the library:
> In order to actually find shared libraries, a variety of mechanisms is deployed. The

most common is an environment variable (Linux, Solaris, and many others: LD_
LIBRARY_PATH, HP-UX: SHLIB_PATH, AIX: LIBPATH, Mac OS X: DYLD_LIBRARY_PATH). It
contains a colon-separated list of directories which are searched for shared libraries.
Failing that, a cache file (see below) is consulted, and then some default directories
(Linux: /usr/lib and /lib). Setting an environment variable doesn’t require root privi-
lege, and can be useful for testing. Library paths can also be hard-coded in the exe-
cutable file using a special linker option (Solaris: -R).

> In order to prepare the cache consulted by the run-time linker, a special program
(Linux: ldconfig) must be invoked. This program scans all relevant locations for

1. See http://www.gnu.org/software/libtool/libtool.html

http://www.gnu.org/software/libtool/libtool.html

130 Chapter A: Shared Libraries and DLLs

shared libraries and sets up a cache with the known libraries (Linux: /etc/ld.so.cache).
Usually this program is invoked at boot time, and requires root privilege. This tech-
nique is useful for permanently installing a shared library on a system.

The PDFlib configure script and GNU libtool emit some instructions explaining the re-
quired steps for using a shared library after the build process is completed. You may
recognize some of the above information in these instructions.

In order to find out the shared libraries required by a program a special utility
(Linux: ldd) can be invoked. It informs about the libraries which are required for run-
ning a given program, and tries to locate these on the system. This is convenient for the
analysis of shared library related problems.

If you find yourself fiddling with shared library related problems because you can-
not install the libraries due to a lack of administrator privileges, take a look at the .libs
subdirectory and the library wrapper scripts created by libtool, as well as the test and in-
stall targets in the generated makefiles.

Library versioning scheme used by libtool. If the operating system supports a version-
ing scheme for shared libraries libtool will use it, and create versioned libraries. Library
version numbers are different from software version numbers – don’t expect PDFlib’s
major and minor version numbers to show up in library file names! Library versions
rather identify the binary programming interface exposed by the library. A table with
the PDFlib version numbers and the corresponding interface (libtool) numbers can be
found in the distribution.

Windows DLLs
DLLs (Dynamic Link Libraries) on Windows generally don’t pose any problems, the ma-
jor exception being the cluttering of the Windows directory with all kinds of DLLs in-
stalled by every vendor and his dog. The PDFlib ActiveX component tries to avoid this
issue by installing the required DLL into a private directory and custom registry entries.
If you want to move the PDFlib DLL around your system, it may be useful to know the
order in which Windows searches for DLLs:
> The current directory (this may actually be difficult to determine, e.g. if you are

using a script interpreter).
> Windows 95/98: the Windows system directory
> Windows NT/2000/XP: the 32-bit Windows system directory (system32)
> Windows NT/2000/XP: the 16-bit Windows system directory (system)
> The Windows directory
> The directories listed in the PATH environment variable

Shared Libraries on the Macintosh
Shared libraries on the Mac OS are supported on PowerPC machines via the Code Frag-
ment Manager (CFM). A file type of shlb is generally used for shared libraries. The system
looks for shared libraries in the following locations:
> The application folder
> The Extensions folder in the active system folder

Mac OS X supports Unix-style shared libraries as detailed above.

B PDFlib Quick Reference 131

B PDFlib Quick Reference
General Functions

Text Functions

Function prototype page
void PDF_boot(void) 84
void PDF_shutdown(void) 84
PDFlib_api * PDF_boot_dll(void) 85
void PDF_shutdown_dll(PDFlib_api *PDFlib) 85
int PDF_get_majorversion(void) 85
int PDF_get_minorversion(void) 85
PDF *PDF_new(void) 85
PDF *PDF_new2(void (*errorhandler)(PDF *p, int type, const char *msg), void* (*allocproc)(PDF *p, size_t
size, const char *caller), void* (*reallocproc)(PDF *p, void *mem, size_t size, const char *caller), void
(*freeproc)(PDF *p, void *mem), void *opaque) 86
void PDF_delete(PDF *p) 86
void *PDF_get_opaque(PDF *p) 87
int PDF_open_file(PDF *p, const char *filename) 87
void PDF_open_mem(PDF *p, size_t (*writeproc)(PDF *p, void *data, size_t size)) 88
const char * PDF_get_buffer(PDF *p, long *size) 89
void PDF_close(PDF *p) 89
void PDF_begin_page(PDF *p, float width, float height) 90
void PDF_end_page(PDF *p) 90
float PDF_get_value(PDF *p, const char *key, float modifier) 90
void PDF_set_value(PDF *p, const char *key, float value) 91
const char * PDF_get_parameter(PDF *p, const char *key, float modifier) 91
void PDF_set_parameter(PDF *p, const char *key, const char *value) 91

Function prototype page
int PDF_findfont(PDF *p, const char *fontname, const char *encoding, int options) 92
void PDF_setfont(PDF *p, int font, float fontsize) 93
void PDF_show(PDF *p, const char *text) 95
void PDF_show2(PDF *p, const char *text, int len) 95
void PDF_show_xy(PDF *p, const char *text, float x, float y) 95
void PDF_show_xy2(PDF *p, const char *text, int len, float x, float y) 95
void PDF_continue_text(PDF *p, const char *text) 96
void PDF_continue_text2(PDF *p, const char *text, int len) 96
int PDF_show_boxed(PDF *p, const char *text, float x, float y, float width, float height, const char *mode,
const char *feature) 96
float PDF_stringwidth(PDF *p, const char *text, int font, float size) 97
float PDF_stringwidth2(PDF *p, const char *text, int len, int font, float size) 97
void PDF_set_text_pos(PDF *p, float x, float y) 93

132 Chapter B: PDFlib Quick Reference

Graphics Functions

Color Functions

Function prototype page
void PDF_setdash(PDF *p, float b, float w) 98
void PDF_setpolydash(PDF *p, float *darray, int length) 98
void PDF_setflat(PDF *p, float flatness) 98
void PDF_setlinejoin(PDF *p, int linejoin) 99
void PDF_setlinecap(PDF *p, int linecap) 99
void PDF_setmiterlimit(PDF *p, float miter) 100
void PDF_setlinewidth(PDF *p, float width) 100
void PDF_initgraphics(PDF *p) 100
void PDF_save(PDF *p) 100
void PDF_restore(PDF *p) 101
void PDF_translate(PDF *p, float tx, float ty) 101
void PDF_scale(PDF *p, float sx, float sy) 101
void PDF_rotate(PDF *p, float phi) 102
void PDF_skew(PDF *p, float alpha, float beta) 102
void PDF_concat(PDF *p, float a, float b, float c, float d, float e, float f) 102
void PDF_setmatrix(PDF *p, float a, float b, float c, float d, float e, float f) 103
void PDF_moveto(PDF *p, float x, float y) 103
void PDF_lineto(PDF *p, float x, float y) 103
void PDF_curveto(PDF *p, float x1, float y1, float x2, float y2, float x3, float y3) 104
void PDF_circle(PDF *p, float x, float y, float r) 104
void PDF_arc(PDF *p, float x, float y, float r, float alpha, float beta) 104
void PDF_arcn(PDF *p, float x, float y, float r, float alpha, float beta) 105
void PDF_rect(PDF *p, float x, float y, float width, float height) 105
void PDF_closepath(PDF *p) 105
void PDF_stroke(PDF *p) 106
void PDF_closepath_stroke(PDF *p) 106
void PDF_fill(PDF *p) 106
void PDF_fill_stroke(PDF *p) 106
void PDF_closepath_fill_stroke(PDF *p) 106
void PDF_clip(PDF *p) 107
void PDF_endpath(PDF *p) 107

Function prototype page
void PDF_setcolor(PDF *p, const char *type, const char *colorspace, float c1, float c2, float c3, float c4) 107
int PDF_makespotcolor(PDF *p, const char *spotname, int len) 108
int PDF_begin_pattern(PDF *p, float width, float height, float xstep, float ystep, int painttype) 108
void PDF_end_pattern(PDF *p) 109

B PDFlib Quick Reference 133

Image Functions

PDF Import (PDI) Functions

Hypertext Functions

Function prototype page
int PDF_open_image_file(PDF *p, const char *type, const char *filename, const char *stringparam, int
intparam) 109
int PDF_open_CCITT(PDF *p, const char *filename, int width, int height, int BitReverse, int K, int BlackIs1) 111
int PDF_open_image(PDF *p, const char *type, const char *source, const char *data, long length, int
width, int height, int components, int bpc, const char *params) 111
void PDF_close_image(PDF *p, int image) 113
void PDF_place_image(PDF *p, int image, float x, float y, float scale) 113
int PDF_begin_template(PDF *p, float width, float height) 114
void PDF_end_template(PDF *p) 114

Function prototype page
int PDF_open_pdi(PDF *p, const char *filename , const char *stringparam, int intparam) 114
void PDF_close_pdi(PDF *p, int doc) 115
int PDF_open_pdi_page(PDF *p, int doc, int pagenumber, const char* pagelabel) 115
void PDF_close_pdi_page(PDF *p, int page) 116
void PDF_place_pdi_page(PDF *p, int page, float x, float y, float sx, float sy) 116
float PDF_get_pdi_value(PDF *p, const char *key, int doc, int page, int index) 116
const char * PDF_get_pdi_parameter(PDF *p, const char *key, int doc, int page, int index, int *len) 117

Function prototype page
int PDF_add_bookmark(PDF *p, const char *text, int parent, int open) 119
void PDF_set_info(PDF *p, const char *key, const char *value) 119
void PDF_attach_file(PDF *p, float llx, float lly, float urx, float ury, const char *filename, const char
*description, const char *author, const char *mimetype, const char *icon) 120
void PDF_add_note(PDF *p, float llx, float lly, float urx, float ury, const char *contents, const char *title,
const char *icon, int open) 121
void PDF_add_pdflink(PDF *p, float llx, float lly, float urx, float ury, const char *filename, int page, const
char *dest) 123
void PDF_add_locallink(PDF *p, float llx, float lly, float urx, float ury, int page, const char *dest) 123
void PDF_add_launchlink(PDF *p, float llx, float lly, float urx, float ury, const char *filename) 123
void PDF_add_weblink(PDF *p, float llx, float lly, float urx, float ury, const char *url) 124
void PDF_set_border_style(PDF *p, const char *style, float width) 124
void PDF_set_border_color(PDF *p, float red, float green, float blue) 124
void PDF_set_border_dash(PDF *p, float b, float w) 124
void PDF_add_thumbnail(PDF *p, int image) 125

134 Chapter B: PDFlib Quick Reference

Parameters and Values
category function keys
setup set_parameter prefix, resourcefile, compatibility, warning, flush

set_value compress
get_value major, minor, revision
get_parameter version, scope

document set_value pagewidth, pageheight
CropBox, BleedBox, ArtBox, TrimBox: these must be followed by a slash ’/’
character and one of llx, lly, urx, ury, for example: CropBox/llx

get_value pagewidth, pageheight
font set_parameter FontAFM, FontPFM, FontOutline, Encoding, fontwarning
text set_value leading, textrise, horizscaling, textrendering, charspacing, wordspacing

get_value leading, textrise, horizscaling, textrendering, charspacing, wordspacing,
textx, texty, font, fontsize, capheight, ascender, descender

set_parameter underline, overline, strikeout, nativeunicode
get_parameter underline, overline, strikeout, fontname, fontencoding

graphics set_parameter fillrule
get_value currentx, currenty

image get_value imagewidth, imageheight, resx, resy
set_parameter imagewarning

PDI get_parameter pdi, inheritgstate
set_parameter pdiwarning, pdistrict, inheritgstate, pdiusebox
get_pdi_value /Root/Pages/Count, /Rotate, version, width, height

CropBox, BleedBox, ArtBox, TrimBox: these must be followed by a slash ’/’
character and one of llx, lly, urx, ury, for example: CropBox/llx

get_pdi_
parameter

filename, /Info/<key>

hypertext set_parameter openaction, openmode, bookmarkdest, transition, base
set_value duration

C Revision History 135

C Revision History
Version information on PDFlib can be found in the source code distribution.

Revision history of this manual

Date Changes
June 14, 2002 > Minor changes for PDFlib 4.0.3 and extensions for the .NET binding
January 26, 2002 > Minor changes for PDFlib 4.0.2 and extensions for the IBM eServer edition
May 17, 2001 > Minor changes for PDFlib 4.0.1
April 1, 2001 > Documents PDI and other features of PDFlib 4.0.0
February 5, 2001 > Documents the template and CMYK features in PDFlib 3.5.0
December 22, 2000 > ColdFusion documentation and additions for PDFlib 3.03; separate ActiveX edi-

tion of the manual
August 8, 2000 > Delphi documentation and minor additions for PDFlib 3.02
July 1, 2000 > Additions and clarifications for PDFlib 3.01
Feb. 20, 2000 > Changes for PDFlib 3.0
Aug. 2, 1999 > Minor changes and additions for PDFlib 2.01
June 29, 1999 > Separate sections for the individual language bindings

> Extensions for PDFlib 2.0
Feb. 1, 1999 > Minor changes for PDFlib 1.0 (not publicly released)
Aug. 10, 1998 > Extensions for PDFlib 0.7 (only for a single customer)
July 8, 1998 > First attempt at describing PDFlib scripting support in PDFlib 0.6
Feb. 25, 1998 > Slightly expanded the manual to cover PDFlib 0.5
Sept. 22, 1997 > First public release of PDFlib 0.4 and this manual

136 Chapter C: Revision History

Index 137

Index

0-9
16-bit encodings 64
8-bit encodings 46, 64

A
Acrobat 3 compatibility 12
Acrobat 4 compatibility 12
Acrobat 5 compatibility 13
ActiveX binding

general 17
Adobe Font Metrics (AFM) 54
Adobe Glyph List (AGL) 49, 64
AFM (Adobe Font Metrics) 54
AGL (Adobe Glyph List) 49, 64
Aladdin free public license 127
All spot color name 108
alpha channel 75
annotations 64, 121
API (Application Programming Interface)

reference 82
ArtBox 43, 87, 117, 118, 134
AS/400 15, 47
ascender 67
ascender parameter 92
Asian FontPack 60
attachments 64, 120
Author field 120
availability of PDFlib 14

B
base parameter 122
baseline compression 71
Bézier curve 104
big-endian 65
bindings 14
BitReverse 111
BlackIs1 111
BleedBox 43, 87, 117, 118, 134
blind mode 69, 97
bold CJK text 61
BOM (Byte Order Mark) 65
bookmarkdest parameter 119
bookmarks 64, 119

hide 118
builtin encoding 47
Byte Order Mark 65
byte ordering 65

C
C binding 17

error handling 20
memory management 22
Unicode support 21
version control 21

C++ binding 22
error handling 23
memory management 25
native exceptions 23
Unicode support 25
version control 25

capheight 67
capheight parameter 92
categories of resources 58
CCITT 72, 111
CCSID 49
CFM (Code Fragment Manager) 130
character ID (CID) 59
character metrics 67
character names 51
character sets 46, 64
characters per inch 68
charspacing parameter 94
Chinese 59, 62
CID fonts 59
CJK (Chinese, Japanese, Korean) 59
clip 44
CMaps 60, 62
code page

8-bit 48
IBM 1047 47
Microsoft Windows 1250-1258 50
Microsoft Windows 1252 46
Unicode-based 64

color 44
color functions 107
colorize 111
COM (Component Object Model): see ActiveX

binding
commercial license 127
compatibility

Acrobat 3-5 12
Acrobat Reader 12

compatibility parameter 84
compress parameter 84
coordinate range 43
coordinate system 40

metric 41
top-down 42

138 Index

core fonts 46
CPI (characters per inch) 68
Creator field 120
CropBox 43, 87, 117, 118, 134
current point 44
currentx and currenty parameter 67, 103
custom encoding 48

D
dash pattern 98
default coordinate system 40
default zoom 118
demo stamp 7
descender 67
descender parameter 92
descriptor 53
DLL (dynamic link library) 129
document and page functions 87
document information fields 64, 119
document open action 118
downsampling 73
dpi calculations 73
Dublin Core 119
duration parameter 120

E
EBCDIC 15, 17, 47
ebcdic encoding 47
EJB (Enterprise Java Beans) 27
embedded systems 16
embedding fonts 53
encoding 46, 64

CJK 63
custom 48
fetching from the system 49
for hypertext 52
Unicode 64

Encoding parameter 91
environment variable PDFLIBRESOURCE 59
error handling 16, 39

API 86
error names 40
in C 20
in C++ 23
in Java 28
in Perl 31
in PHP 33
in Python 34
in Tcl 36

eServer zSeries and iSeries 15
Euro character 46, 51
evaluation stamp 7
exception: see error handling
explicit transparency 76
external image references 74

F
features of PDFlib 11
file attachments 64, 120
filename parameter 117
fill 44
fillrule parameter 105
flush parameter 39, 84, 88
font metrics 67
font parameter 91
FontAFM parameter 91
fontencoding parameter 92
fontname parameter 92
FontOutline parameter 91
FontPFM parameter 91
fonts

AFM files 54
Asian fontpack 60
CID fonts 59
CJK fonts 59
descriptor 53
embedding 53
general 46
glyph names 51
legal aspects of embedding 56
monospaced 68
OpenType 54, 55
PDF core set 46
PFA files 54
PFB files 54
PFM files 54
PostScript 54
resource configuration 56
TrueType 55
type 1 54
type 3 54
Unicode support 64

fontsize parameter 92
FontSpecific encoding 47
fontwarning parameter 92
form XObjects 45

G
get_message() C++ method 24
get_opaque() C++ method 24
get_value() 90
GIF 71, 109
graphics functions 98
graphics state functions 98
grid.pdf 41

H
horizontal writing mode 60, 61
horizscaling parameter 94
host encoding 47
host fonts 55
hypertext

Index 139

encoding 52
functions 118

I
IBM eServer 15
icons

for file attachments 121
for notes 122

ignoremask 77, 110
image data, re-using 74
image file formats 70
image functions 109
image mask 75, 76
image references 74
image scaling 72, 73
imagewarning parameter 70, 110
imagewidth and imageheight parameters 73, 110
implicit transparency 76
import functions for PDF 114
inch 40
in-core PDF generation 38
Info keys in imported PDF documents 118
inheritgstate parameter 114
invert 110
invisible text 68
iSeries 15
ISO 10646 64
ISO 8859-1 46, 53
ISO 8859-2 to -15 50

J
Japanese 59, 62
Java application servers 27
Java binding 26

EJB 27
error handling 28
javadoc 26
package 26
servlet 27
Unicode support 29
version control 29

JFIF 71
JPEG 12, 71, 109, 113

K
K parameter for CCITT images 111
Keywords field 120
Korean 59, 62

L
landscape mode 90
language bindings: see bindings
Latin 1 encoding 46, 53
LD_LIBRARY_PATH 129
leading 67
leading parameter 94

licensing conditions 127
licensing PDFlib and PDI 7
line spacing 67
links 122
little-endian 65
longjmp 20
LWFN (LaserWriter Font) 54
LZW compression 71, 81

M
Mac OS 15

UPR configuration 58
macroman encoding 47
major parameter 84
makepsres utility 56
mask 76, 110
masked 76, 110
masking images 75
MediaBox 43
memory images 74
memory management

API 86
in C 22
in C++ 25

memory, generating PDF documents in 38
metadata 119
metric coordinates 41
metrics 67
millimeters 40
minor parameter 84
mirroring 102
monospaced fonts 68
multi-page image files 77

N
nagger 7
native C++ exception handling 23
nativeunicode parameter 66, 94
.NET binding 29
None spot color name 108
non-proportional image scaling 74
note annotations 64, 121

O
openaction parameter 118
openmode parameter 118
OpenType fonts 54, 55
outline text 68
output accuracy 43
overline parameter 68, 94

P
page 78, 111
page descriptions 40
page size formats 125

limitations in Acrobat 43

140 Index

page transitions 120
pagewidth and pageheight parameters 87
parameter

ascender 92
base 122
bookmarkdest 119
capheight 92
charspacing 94
compatibility 84
compress 84
currentx and currenty 67, 103
descender 92
duration 120
Encoding 91
filename 117
fillrule 105
flush 39, 84, 88
font 91
FontAFM 91
fontencoding 92
fontname 92
FontOutline 91
FontPFM 91
fontsize 92
fontwarning 92
horizscaling 94
imagewarning 70, 110
imagewidth and imageheight 73, 110
inheritgstate 114
leading 94
major 84
minor 84
nativeunicode 66, 94
openaction 118
openmode 118
overline 68, 94
pageheight and pagewidth 87
pdi 117
pdistrict 118
pdiusebox 80, 118
pdiwarning 118
prefix 84
resourcefile 59, 84
resx and resy 110
revision 84
scope 84
serial 84
strikeout 68, 94
textrendering 61, 68, 94
textrise 94
textx and texty 67, 70, 94
transition 120
underline 68, 94
version 84, 118
warning 40, 84
width and height 117
wordspacing 94

parameter handling functions 90

path 44
painting and clipping 105

pattern color space 44
PDF import functions 114
PDF import library (PDI) 78, 114
PDF_add_bookmark() 119
PDF_add_launchlink() 123
PDF_add_locallink() 123
PDF_add_note() 121
PDF_add_pdflink() 123
PDF_add_thumbnail() 125
PDF_add_weblink() 124
PDF_arc() 104
PDF_arcn() 105
PDF_attach_file() 120
PDF_begin_page() 90
PDF_begin_pattern 108
PDF_begin_template() 114
PDF_boot() 84
PDF_boot_dll() 85
PDF_circle() 104
PDF_clip() 107
PDF_close() 89
PDF_close_image() 113
PDF_close_pdi 115
PDF_close_pdi_page 116
PDF_closepath() 105
PDF_closepath_fill_stroke() 106
PDF_closepath_stroke() 106
PDF_concat() 102
PDF_continue_text() 96
PDF_continue_text2() 96
PDF_curveto() 104
PDF_delete() 86
PDF_end_page() 90
PDF_end_pattern 109
PDF_end_template() 114
PDF_endpath() 107
PDF_fill() 106
PDF_fill_stroke() 106
PDF_findfont() 92
PDF_get_buffer() 38, 89
PDF_get_majorversion() 85
PDF_get_minorversion() 85
PDF_get_opaque() 87
PDF_get_parameter() 91
PDF_get_pdi_parameter 117
PDF_get_pdi_value 116
PDF_get_value() 90
PDF_initgraphics() 100
PDF_lineto() 103
PDF_makespotcolor() 108
PDF_moveto() 103
PDF_new() 85
PDF_new2() 86
PDF_open_CCITT() 111
PDF_open_file() 87
PDF_open_fp() 88

Index 141

PDF_open_image() 111
PDF_open_image_file() 109
PDF_open_mem() 88
PDF_open_pdi 114
PDF_open_pdi_page 115
PDF_place_image() 113
PDF_place_pdi_page 116
PDF_rect() 105
PDF_restore() 101
PDF_rotate() 102
PDF_save() 100
PDF_scale() 101
PDF_set_border_color() 124
PDF_set_border_dash() 124
PDF_set_border_style() 124
PDF_set_info() 119
PDF_set_parameter() 59, 91
PDF_set_text_pos() 93
PDF_set_value() 91
PDF_setcolor() 107
PDF_setdash() 98
PDF_setflat() 98
PDF_setfont() 93
PDF_setgray() 109
PDF_setgray_fill() 109
PDF_setgray_stroke() 109
PDF_setlinecap() 99
PDF_setlinejoin() 99
PDF_setlinewidth() 100
PDF_setmatrix() 103
PDF_setmiterlimit() 100
PDF_setpolydash() 98
PDF_setrgbcolor() 109
PDF_setrgbcolor_fill() 109
PDF_setrgbcolor_stroke() 109
PDF_show() 95
PDF_show_boxed() 69, 96
PDF_show_xy() 95
PDF_show_xy2() 95
PDF_show2() 95
PDF_shutdown() 84
PDF_shutdown_dll() 85
PDF_skew() 102
PDF_stringwidth() 69, 97
PDF_stringwidth2() 97
PDF_stroke() 106
PDF_translate() 101
PDFDocEncoding 52
PDFlib

features 11
program structure 38
thread-safety 11, 17

pdflib.upr 59
PDFLIBRESOURCE environment variable 59
PDI 78, 114
pdi parameter 117
pdistrict parameter 118
pdiusebox parameter 80, 118

pdiwarning parameter 118
Perl binding 29

error handling 31
Unicode support 31
version control 31

PFA (Printer Font ASCII) 54
PFB (Printer Font Binary) 54
PFM (Printer Font Metrics) 54
Photoshop 113
PHP binding 31

error handling 33
Unicode support 33
version control 33

platforms 14
PNG 70, 76, 109
Portable Document Format Reference Manual 128
PostScript fonts 54
PostScript Language Reference Manual 128
prefix parameter 84
print_glyphs.ps 51
Printer Font ASCII (PFA) 54
Printer Font Binary (PFB) 54
Printer Font Metrics (PFM) 54
program structure 38
Python binding 33

error handling 34
Unicode support 35
version control 35

R
raster images

functions 109
general 70

raw image data 72, 111
references 128
reflection 102
resource category 58
resourcefile parameter 59, 84
resx and resy parameter 110
revision parameter 84
RGB color 44
Rotate entry in imported PDF pages 117
rotating objects 41
RPG binding 35

S
S/390 15, 47
scaling images 72, 73
scope definitions 83
scope parameter 84
scripting API 14
separation color space 44
serial parameter 7, 84
servlet 27
set_parameter() 59, 91
setjmp 20
setup functions 84

142 Index

shared libraries 129
show_boxed() 96
skewing 102
SPIFF 71
spot color (separation color space) 44
standard output 87
standard page sizes 125
stdout channel 87
strikeout parameter 68, 94
stroke 44
structure of PDFlib programs 38
Subject field 120
subpath 44
subscript 68, 94
superscript 68, 94
Symbol font 47
system encoding support 49

T
T1lib 54
Tcl binding 35

error handling 36
Unicode support 37
version control 37

templates 45
text box formatting 67
text functions 91
text handling 46
text metrics 67
text position 67
text rendering modes 68
text variations 67
textrendering parameter 61, 68, 94
textrise parameter 94
textx and texty parameter 61, 67, 70, 94
thread-safety 11, 17
thumbnails 118, 125
TIFF 71, 109

multi-page 77
tiling 44
Title field 120
top-down coordinates 42
transition parameter 120
transparency 75

problems with 77
Trapped field 120
TrimBox 43, 87, 117, 118, 134
TrueType fonts 55
TTF (TrueType font) 55
type 1 fonts 54
type 3 fonts 54

U
UCS-2 66

underline parameter 68, 94
Unicode 17, 64

in C 21
in C++ 25
in Java 29
in Perl 31
in PHP 33
in Python 35
in Tcl 37
problems with language bindings 66

units 40
UPR (Unix PostScript Resource) 56

file format 57
file searching 59

URL 74, 124
user space 40
UTF-16 65

V
value: see parameter
version control

for shared libraries 130
general 16
in C 21
in C++ 25
in Java 29
in libtool 130
in Perl 31
in PHP 33
in Python 35
in Tcl 37

version parameter 84, 118
vertical writing mode 60, 61

W
warning 42, 123

suppress 40
warning parameter 40, 84
weblink 124
width and height parameters 117
winansi encoding 46, 47
wordspacing parameter 94
writing modes 60, 61

X
XObjects 45

Z
ZapfDingbats font 47
zoom factor 118
zSeries 15

	Contents
	0 Applying the PDFlib License Key
	1 Introduction
	1.1 PDFlib Programming
	1.2 PDFlib Features
	1.3 PDFlib Output and Compatibility

	2 PDFlib Language Bindings
	2.1 Overview of the PDFlib Language Bindings
	2.1.1 What’s all the Fuss about Language Bindings?
	2.1.2 Availability and Platforms
	2.1.3 The »Hello world« Example
	2.1.4 Error Handling
	2.1.5 Version Control
	2.1.6 Unicode Support
	2.1.7 Summary of Language Bindings

	2.2 ActiveX/COM Binding
	2.3 C Binding
	2.3.1 How does the C Binding work?
	2.3.2 Availability and Special Considerations for C
	2.3.3 The »Hello world« Example in C
	2.3.4 Error Handling in C
	2.3.5 Version Control in C
	2.3.6 Unicode Support in C
	2.3.7 Memory Management in C

	2.4 C++ Binding
	2.4.1 How does the C++ Binding work?
	2.4.2 Availability and Special Considerations for C++
	2.4.3 The »Hello world« Example in C++
	2.4.4 Error Handling in C++
	2.4.5 Version Control in C++
	2.4.6 Unicode Support in C++
	2.4.7 Memory Management in C++

	2.5 Java Binding
	2.5.1 How does the Java Binding work?
	2.5.2 Installing the PDFlib Java Edition
	2.5.3 The »Hello world« Example in Java
	2.5.4 Error Handling in Java
	2.5.5 Version Control in Java
	2.5.6 Unicode Support in Java

	2.6 .NET Binding
	2.7 Perl Binding
	2.7.1 How does the Perl Binding work?
	2.7.2 Installing the PDFlib Perl Edition
	2.7.3 The »Hello world« Example in Perl
	2.7.4 Error Handling in Perl
	2.7.5 Version Control in Perl
	2.7.6 Unicode Support in Perl

	2.8 PHP Binding
	2.8.1 How does the PHP Binding work?
	2.8.2 Installing the PDFlib PHP Edition
	2.8.3 The »Hello world« Example in PHP
	2.8.4 Error Handling in PHP
	2.8.5 Version Control in PHP
	2.8.6 Unicode Support in PHP

	2.9 Python Binding
	2.9.1 How does the Python Binding work?
	2.9.2 Installing the PDFlib Python Edition
	2.9.3 The »Hello world« Example in Python
	2.9.4 Error Handling in Python
	2.9.5 Version Control in Python
	2.9.6 Unicode Support in Python

	2.10 RPG Binding
	2.11 Tcl Binding
	2.11.1 How does the Tcl Binding work?
	2.11.2 Installing the PDFlib Tcl Edition
	2.11.3 The »Hello world« Example in Tcl
	2.11.4 Error Handling in Tcl
	2.11.5 Version Control in Tcl
	2.11.6 Unicode Support in Tcl

	3 PDFlib and PDI Programming
	3.1 General Programming Issues
	3.1.1 PDFlib Program Structure
	3.1.2 Generating PDF Documents directly in Memory
	3.1.3 Error Handling

	3.2 Page Descriptions
	3.2.1 Coordinate Systems
	3.2.2 Page and Coordinate Limits
	3.2.3 Paths and Color
	3.2.4 Templates

	3.3 Text Handling
	3.3.1 The PDF Core Fonts
	3.3.2 8-Bit Encodings built into PDFlib
	3.3.3 Custom Encoding and Code Page Files for 8-Bit Encodings
	3.3.4 The Euro Character
	3.3.5 Hypertext Encoding
	3.3.6 PostScript, TrueType, and OpenType Fonts
	3.3.7 Resource Configuration and the UPR Resource File
	3.3.8 Japanese, Chinese, and Korean Text
	3.3.9 Unicode Support
	3.3.10 Text Metrics, Text Variations, and Text Box Formatting

	3.4 Image Handling
	3.4.1 Supported Image File Formats
	3.4.2 Code Fragments for Common Image Tasks
	3.4.3 Re-using Image Data
	3.4.4 Memory Images and External Image References
	3.4.5 Image Masks and Transparency
	3.4.6 Colorizing Images
	3.4.7 Multi-Page Image Files

	3.5 PDF Import with PDI
	3.5.1 PDI Features and Applications
	3.5.2 Using PDI Functions with PDFlib
	3.5.3 Acceptable PDF Documents
	3.5.4 PDF Import, Templates and graphics/text state inheritance

	4 PDFlib and PDI API Reference
	4.1 Data Types, Naming Conventions, and Scope
	4.2 General Functions
	4.2.1 Setup
	4.2.2 Document and Page
	4.2.3 Parameter Handling

	4.3 Text Functions
	4.3.1 Font Handling
	4.3.2 Text Output

	4.4 Graphics Functions
	4.4.1 Graphics State Functions
	4.4.2 Saving and Restoring Graphics States
	4.4.3 Coordinate System Transformation Functions
	4.4.4 Path Construction
	4.4.5 Path Painting and Clipping

	4.5 Color Functions
	4.6 Image Functions
	4.7 PDF Import (PDI) Functions
	4.7.1 Document and Page
	4.7.2 Parameter Handling

	4.8 Hypertext Functions
	4.8.1 Document Open Action and Open Mode
	4.8.2 Bookmarks
	4.8.3 Document Information Fields
	4.8.4 Page Transitions
	4.8.5 File Attachments
	4.8.6 Note Annotations
	4.8.7 Links
	4.8.8 Thumbnails

	4.9 Page Size Formats

	5 The PDFlib License
	5.1 The »Aladdin Free Public License«
	5.2 The Commercial PDFlib License

	6 References
	A Shared Libraries and DLLs
	Shared Libraries on Unix Systems
	Windows DLLs
	Shared Libraries on the Macintosh

	B PDFlib Quick Reference
	General Functions
	Text Functions
	Graphics Functions
	Color Functions
	Image Functions
	PDF Import (PDI) Functions
	Hypertext Functions
	Parameters and Values

	C Revision History
	Index
	0-9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

